專屬的定製化車用電子功能設計

随著全球汽車產業邁向智能化與電動化,車用電子更重視晶片的可靠度測試及安全性功能,以期達到 AEC-Q100 的規範,進而打進車用市場。芯測科技的 START™ v3 除了提供豐富的記憶體測試功能與高效率的記憶 體修復方案,還提供專屬的定製化車用電子功能,如:POT 2.0 (Power_On Test), ECC (Error-Correcting-Code), UDA (User Defined Algorithm)等功能。讓晶片開發商可以根據晶片的應用,精準檢測出有記憶體缺陷的車用 電子晶片,提高行車安全。

— VOT 2.0 (Power_On Test)

1.功能介紹:

POT 2.0 在電子產品裡是非常重要的功能,尤其在車用與安全性相關的電子產品。能確保硬體電路在 上電後進行記憶體檢測,並驗證行為正確性。芯測科技開發了具有記憶體測試與修復功能的 POT 2.0,加入 START[™] v3 工具中,可以讓使用者方便在設計裡加入記憶體 POT 功能的電路,並提供下列 幾種啟動方式:

- ROM:將測試命令(Command)存入 ROM。
- RTL:將測試命令存入由 RTL 描述的 ROM。
- Basic:提供 host_MEN 信號,進行記憶體測試。
- CPU: 可以透過 CPU 下達<mark>測試</mark>指令來控制 BIST 電路。

在應用上也能加入 LATCH_GO 診斷功能,以一顆記憶體對應一位元的形式進行記憶體錯誤編號標記, 讓使用者快速了解記憶體發生錯誤的位置。而 Error Injection 的功能,能在電路 Test Pattern Generator 中植入用於驗證 BIST 電路正確性的錯誤資訊,能大幅增加 BIST 電路可靠度。此外,使用 POT 2.0 時,如檢測出新的記憶體錯誤,皆能對錯誤點進行記憶體修復。

2. 使用方式:

設定 START[™] v3 (BFL):

由 set pot 選項設定 · 如圖一所示。

set parallel on	= no	# ves. no
set reduce address simulation	= no	# yes, no
set rom half access	= no	# yes, no
set rom result shiftin	= yes	# yes, no
set rom_result_shiftout	= no	# yes, no
set specify_clock_mux	= no	# yes, no
<pre>set specify_dt_port_value</pre>	= no	# yes, no
set O pipeline	= no	# ves. no
set pot	= rom	<pre># no, rom, hw_rom, basic , cpu</pre>
set ecc_function	= no	# yes, no

圖一 POT 設定選項

i. set pot = rom or set pot =hw_rom

設定 pot 選項為 "rom" ·測試命令將被存入 ROM;設定 pot 選項為 "hw_rom" ·會將測試命令存入由 RTL 描述的 ROM · 又稱為 Hardwired ROM ·最後完成 BFL 與 BII 流程 ·產生相對應之電路與腳位以供使用。

POT 的模塊圖,主要分為三個模塊,分別為 ROM 記憶體/Hardwired ROM, ROM Controller 和 MBIST/MBISR,如圖二所示。

首先 ROM Controller 接收到執行 POT 功能後,會讀取存放在 ROM 記憶體/Hardwired ROM 的測試 命令,接著發送控制訊號到 MBIST,開始進行記憶體的測試,若檢測到記憶體錯誤,MBISR 則會自 動執行修復流程。

執行 POT 功能相關訊號的波形圖·SYS_POT 為 POT 的始能訊號·此訊號啟動後·ROM Controller 會到 ROM 記憶體/Hardwired ROM 進行讀取測試指令·並開始記憶體測試與修復·可由 MGO, MRD, RGO 訊號得知測試結果·如圖三所示。

圖三 POT 相關訊號波形圖

POT= "rom" 或 "hw_rom" 的 MBIST/MBISR 的訊號線如圖四所示。

Name	Direction	Width	Description
SYS_READY	input	1	The system boot is ready to enable BISR logics (hard repair only)
			"1'b1": Ready to load data from NVM storage)
SYS_POT	input	1	Enable Power on test (normal function test only)
BOOT_CFG_DONE	output	1	The shifting of configuration data is completed (hard repair only). "1'b1": the scan is completed "1'b0": the scan is progressing
RCK	input	1	The clock signal for storage device, BISR logics and configuration buffer
RRST	input	1	The reset signal for storage device, BISR logics and configuration buffer
MRD	output	1	Indicates if the test is ended or not. 0: The test is uncompleted. 1: The test i <mark>s ended.</mark>
MGO	output	1	Indicates if the test is failed or not. 0: The test is failed. 1: The test is passed.
RGO	output	1	In <mark>dicate</mark> s if the logic can be repaired or not. 0: The logic cannot be repaired. 1: The logic can be repaired. (MBISR CTR only.)

圖四 hw_rom 與 rom 的 MBIST/MBISR 訊號

最後產出存入 ROM 之測試命令的 Verilog 檔案,根據使用者設計的 BIST 功能,產生相應的命令,如圖五所示。Hardwired ROM 之 Verilog 程式範例,將測試命令存入由 RTL 描述的 ROM,如圖六所示。

@00000000 000000039 // digital_top_with_pad_digital_top_default ['TRANS : 0',
'PRL_ON : 1', 'GRP_EN : 11', 'MEB_ID : 00', 'MEN : 1']
@00000001 000359b6c // GOLD_SIGNATURE_1 {'ctr_name':
'digital_top_with_pad_digital_top_default', 'rom_tpg_position':
'digital_top_with_pad_digital_top_default_tpg_2_1_1'}
@00000002 0009442a9 // GOLD_SIGNATURE_2 {'ctr_name':
'digital_top_with_pad_digital_top_default', 'rom_tpg_position':
'digital_top_with_pad_digital_top_default_tpg_2_1_2'}
@00000003 000b204e4 // GOLD_SIGNATURE_3 {'ctr_name':
'digital_top_with_pad_digital_top_default', 'rom_tpg_position':
'digital_top_with_pad_digital_top_default_tpg_2_1_3'}


```
iST/RT
              module rom_24_hw (
              CLK,
              Α,
              CEN,
              Q
              ):
              input
                             CLK:
              input [2:0] A;
              input
                             CEN;
              output [23:0] Q;
              reg [23:0] Q;
              always@(posedge CLK)
               begin
                if(~CEN) begin
                 case(A)
                  0: begin
                      Q <= 24'h000039; // digital_top_with_pad_digital_top_default ['TRANS : 0',
              'PRL_ON : 1', 'GRP_EN : 11', 'MEB_ID : 00', 'MEN : 1']
                  end
                  1: begin
                      Q <= 24'h359b6c; // GOLD_SIGNATURE_1 {'ctr_name':
              'digital_top_with_pad_digital_top_default', 'rom_tpg_position':
              'digital_top_with_pad_digital_top_default_tpg_2_1_1'}
                  end
                  2 : begin
                      Q <= 24'h9442a9; // GOLD_SIGNATURE_2 {'ctr_name':
              'digital_top_with_pad_digital_top_default', 'rom_tpg_position':
              'digital_top_with_pad_digital_top_default_tpg_2_1_2'}
                  end
                  3: begin
                      Q <= 24'hb204e4; // GOLD_SIGNATURE_3 {'ctr_name':
              'digital_top_with_pad_digital_top_default', 'rom_tpg_position':
              'digital_top_with_pad_digital_top_default_tpg_2_1_3'}
                  end
                 default : Q \le Q;
                endcase
               end
              end
              endmodule
```

圖六 Hardwired ROM 的 Verilog 程式

ii. set pot = basic

設定 pot 選項為 "basic" 將產生 host_MEN 信號線·供使用者啟動記憶體測試·並可由 MGO, MRD, RGO 訊號得知測試結果· "basic" 選項產生之訊號列表·如圖七所示。

Signal Name	Description	
*_host_MEN:	Indicates to enable or disable MBIST/MBISR.	
*_MRD	Indicates if the test is ended or not.	
	0: The test is uncompleted	
	1: The test is ended	
*_MGO	Indicates if the test is failed or not.	
	0: The test is failed	
	1: The test is passed	
*_RGO	Indicates if the logic can be repaired or not.	
	0: The logic cannot be repaired.	
	1: The logic can be repaired. (MBISR CTR only.)	

圖七 basic 選項的 MBIST/MBISR 訊號

iii. set pot = cpu

設定 pot 選項為 "cpu",可令使用者直接進行 BIST 電路的控制,並可由調整,bfl 檔案之設定,如圖 八所示,增加額外功能,例如 diagnosis_memory_info 功能可新增 LATCH_GO 訊號,令使用者得 以快速了解發生錯誤之記憶體編號。編號六之記憶體發生錯誤,如圖九所示。

set diagnosis_support	= no	# yes, no
set diagnosis_data_sharing	= no	# yes, no
set diagnosis memory info	= no	# yes, no
set diagnosis_time_info	= no	# yes, no

圖八 BFL 上 Latch_GO 設定

\equiv ECC (Error-Correcting-Code)

1. 功能介紹:

ECC (Error-Correcting-Code)是指在傳輸時間允許偵測並校正錯誤的一種編碼方法·在接收端藉由已編 碼資料偵測並校正傳輸錯誤,可應用於許多資料傳遞與資料保存的操作。在記憶體方面, ECC 能使用 電路方法檢查儲存在記憶體中的資料是否正確。

不論是應用在汽車、工業、醫療及通訊等領域,都可能因記憶體失效,導致嚴重後果,而 ECC 的功能, 能提高晶片運行時的穩定性和可靠性。

芯測科技提供 ECC 的功能 · 讓使用者在記憶體增加 ECC 功能 · 使用上可幫助使用者做到 2bits 的偵測 · 及 1bit 的修正,而使用時須由記憶體提供 ECC 使用奇偶校驗 (Parity Check)的空間,來重建校正的數 據,須提供的空間為 2Parity-1> Parity + Data bit,例如記憶體資料長度為 22bits 時,使用 6bits 的 ECC 空 間來檢測 16bit 的數據。

2.使用方式:

設定 START[™] v3 (BFL):

由 set ecc_function 選項設定啟動方式以及 set ecc_prefix 設定 ecc 名稱,如圖十所示。

圖十一 encoder 電路

ECC 波形圖 · data_noise 為記憶體的 data 與編碼過的校驗值 · 透過解碼後 · 得知 correct data · 並可進行 data 修正 · 如圖十三所示 ·

\equiv \cdot UDA (User Defined Algorithm)

1. UDA 功能介紹:

随著科技的演進·新開發的先進製程記憶體搭配現有常見的演算法·會花費較長的測試時間·並且會有 重複測試圖像的行為。例如:使用者若同時選擇 March C⁺(14N)與 March C⁻(11N)的演算法·測試時間 需要 25N。

March C+	<pre>>(wa) >(ra,wb,rb) >(rb,wa,ra) <(ra,wb,rb) <(rb,wa,ra) <(ra)</pre>	
Mar <mark>ch C</mark> -	<mark>>(wa)</mark> >(ra,wb) >(rb,wa) >(ra) <(ra,wb) <(rb,wa) <(ra)	

芯測科技研發了使用者自定義演算法功能 UDA (User Defined Algorithm)可以自行編輯演算法·將重複的元素 (element)去除·去除後測試時間即可縮短成 23N。

(wa) > (ra,wb,rb) > (rb,wa,ra) < (ra,wb,rb) < (rb,wa,ra) </pre>
(ra,wb) > (rb,wa) > (ra) < (ra,wb) < (rb,wa) < (ra)

UDA 以元件的形式表達,可透過元件進行重新排列組合,任意產生出新的演算法,如圖十四所示。

語法↩	功能↩
UP⊲	Address 由 0 開始上數↩
DN⇔	Address 由最大值開始下數↩
ADD_INC↩	由 UP 或 DN 決定,address + 1 或 address - 14
N⇔	不做任何讀寫的行為↩
R(A)⊲	Read memory data,括弧的部份為 Read 的 pattern Ae
W(A)	Write memory data,括弧的部份為 write 的 pattern A
S←⊐	Testing Sleeping₽
,⇔	區隔不同的 operation↩
÷-	完成當下的 element↩

圖十四 以元件的形式表達

圖形化使用者介面 (GUI) · 友好介面讓使用者能快速上手 · 如圖十五所示 ·

	UDA Editor ×
UDA Setting UDA File	
Basic	Algorithm
Algorithm Name	INST
Memory Type SP 🔹	Direction UP
Background / Pattern	Command W(A), • Add
New Background New Pattern	
A 0000 •	
Element	Clear SLP Ok
Generate W(A) • Add	

圖十五 UDA 圖形化操作畫面

2. 使用方</mark>式:

透過 UDA 圖形化操作介面,可快速的設定元素,下圖十六為圖形化操作介面的各項區塊簡介,能簡易的設定測試圖像、讀寫操作方式及位址上下數,完成後產生出演算法。

		UDA Editor	×
	UDA Setting UDA File	演算法編成設定	
	Basic	Algorithm	
演算法名種	🛱 Algorithm Name	INST 設定Address與讀寫	
記憶體種類	Memory Type SP 🔹	Direction UP · 操作方式加入至演	
	-Background / Pattern	Command W(A), 了异本中 Add	
Background設定	New Background New Pattern		
	A 0000 -		
	Element	Clear SLP Ok	
讀宮뭘作設完	Generate W(A) • Add		
項利示IF以入			

圖十六 圖形化操作介面簡介

舉例一個 March C 的演算法·利用圖形化操作介面·完成演算法的設定後·點選 UDA File 可看到演算法設定的結果·並按下 Export·即可將此演算法輸出成.txt 檔。最後在.bfl 設定檔中·設定上述.txt 檔之路徑·完成後即可產生出此演算法的 BIST 電路·如圖十七、十八、十九所示。

UDA Setting UDA File
Basic
Algorithm Name march_c
Memory Type SP Direction DOWN
Background / Pattern Command R(A), Add
New Background New Pattern R(A),
A 0000 -
B 1111 -
Element
Generate W(A) · Add
Clear SLP Ok
UP:W(A); UP:R(A).W(B):
UP:R(B),W(A);
DOWN:R(A),W(B);
DOWN:R(B),W(A); DOWN:R(A);
圖十七 March C 演算法設定
UDA Setting UDA File
Export
User Defined Testing Algorithms - march_c
INST UP {W(A);}
INST UP {R(A),W(B);} INST UP {B(B) W(A);}
INST UP {R(A);}
INST DN $\{R(A), W(B)\}$
INST DN {R(A);}
DEDEAT DATA (0000).
REPEAT_PAT B (1111);
l'
圖十八 演算法輸出
define{user_define_algorithm}
<pre>set SP_alg_path = ./UDA/uda_march_5w.txt </pre>
eng_define{user_define_algorithm}

圖十九 UDA 檔案設定

作者:芯測科技