

1

Customized Design of Exclusive Features for Automotive Electronics

With the global trend towards intelligent and electric vehicles, the reliability testing and safety features of
chips for automotive electronics are becoming increasingly important, so that they can meet the AEC-Q100
specifications and enter the automotive market. iSTART-TEK's START™ v3 not only provides numerous
memory testing functions and high-efficiency memory repair technologies, but also offers exclusive
customized automotive electronic features, such as POT 2.0 (Power-On Test), Error-Correcting-Code (ECC)
and User-Defined Algorithms (UDA). These features enable chip developers to accurately detect memory
defects in automotive chips according to their applications, and enhance driving safety.

I. POT 2.0 (Power_On Test)

1. Feature Introduction
POT 2.0 is an essential function for electronic products, espacially those related to automotive and
safety. It can ensure the memory testing of the hardware circuits after powered on, enabling users
to quickly find where the memery errors occur. iSTART-TEK has developed POT 2.0 with memory
testing and repair capabilities, integrated into the STARTTM v3 tool. This allows users to easily
incorporate memory POT functionality circuits into their designs, offering the following activation
methods.

⚫ ROM: Storing test commands in ROM
⚫ RTL: Storing test commands in ROM described by RTL
⚫ Basic: Providing host_MEN signals for memory testing
⚫ CPU: Controlling the BIST circuit by issuing test instructions through the CPU

The LATCH_GO diagnostic feature can be applied by marking a unique memory error number to
each memory bit, facilitating quick identification of memory error locations. The Error Injection
feature enables the insertion of error information into the Test Pattern Generator circuit to verify
the correctness of the BIST circuit, significantly increasing its reliability. Additionally, when using
POT 2.0, if new memory errors are detected, memory repair can be performed.

2. Usage Methods
STARTTM v3 (BFL) Settings:
Set the activation methods through the set pot options, as shown in Figure 1.

Figure 1 POT Setting Options

i. set pot = rom or set pot = hw_rom

Set the pot option as “rom”, and the testing commands will be stored in ROM. Set the pot option
as hw_“rom”, and the testing commands will be stored in the ROM described by RTL, also known
as Hardwired ROM. Lastly, complete the BFL and BII workflow to generate the corresponding
circuits and pins for use.
POT consists of three main modules: ROM Memory/Hardwired ROM, ROM Controller, and
MBIST/MBISR, as shown in Figure 2.

2

Firstly, after receiving the commands of executing the POT function, the ROM Controller will read
the testing commands stored in the ROM memory/ Hardwired ROM. Next, it will send the control
signals to MBIST to start memory testing. If memory errors are detected, MBISR will automatically
execute the repair workflow.

Figure 2 POT Modules

Figure 3 shows the waveform of POT-related signals. SYS_POT is the enable signal for POT.
Once the signal is activated, the ROM Controller reads the test instructions from ROM
memory/Hardwired ROM and initiates memory testing and repair. The test results can be
obtained from the signals MGO, MRD, and RGO.

Figure 3 The Waveform of POT-related Signals

In the MBIST/MBISR signal lines of POT= "rom" or "hw_rom", n represents the controller number
and m represents the repair controller number, as shown in Figure 4.

3

Figure 4 The MBIST/MBISR Signals of rom and hw_rom

Then, the Verilog file containing the test commands stored in ROM will be generated. It will
generate the corresponding commands based on the BIST functions designed by users, as shown
in Figure 5. The Verilog program example in Figure 6 shows the test commands stored in the ROM
described by RTL.

Figure 5 The Test Commands Stored in ROM

4

Figure 6 The Verilog Program of the Hardwired ROM

5

ii. set pot = basic

When the pot option is as “basic”, the host_MEN signal line will be generated for users to activate
memory testing. The results can be obtained through the MGO, MRD and RGO signals. The signal
list generated by the "basic" option is shown in Figure 7.

Figure 7 The MBIST/MBISR Signals of the “basic” Option

iii. set pot = cpu

By setting the "cpu" option in POT, users can directly control the BIST circuit, and the settings
can be adjusted through the .bfl file, as shown in Figure 8. Additional features can be added,
such as the diagnosis_memory_info function, which includes the LATCH_GO signal, allowing
users to quickly identify the memory number where an error occurs. Figure 9 shows an example
that an error occurs in memory number 6.

Figure 8 The Latch_GO Setting on BFL

6

Figure 9 LATCH_GO Waveform

II. Error-Correcting-Code (ECC)

 1. Feature Introduction
Error-Correcting-Code (ECC) is an encoding method that allows for the detection and correction of
errors within a specified transmission time. It can be applied to various data transmission and storage
operations, where the receiving end uses the encoded data to detect and correct transmission errors.
In the context of memory, ECC to check the correctness of data stored in memory through circuits.

Memory failures can have serious consequences in various industries, including automotive, industrial,
medical, and communication fields. The functionality of ECC can improve the stability and reliability of
chips during operation.

iSTART-TEK provides ECC functionality that enables users to detect 2 bits of errors and correct 1 bit
of errors. When using ECC, the memory needs to allocate space for parity check to reconstruct the
corrected data. The required space can be calculated as 2Parity-1 > Parity + Data bit. For example, if
the memory data length is 22 bits, 6 bits of ECC space can be used to check 16 bits of data.

2. Usage Methods
STARTTM v3 (BFL) Setting:
Use the "set ecc_function" option, and set the ECC name using the "set ecc_prefix" command, as
shown in Figure 10.

Figure 10 ECC Setting Options

After executing the BFL and BII workflow, it will generate the encoder and decoder circuits with
the ECC function, as shown in Figure 11 & 12.

7

 Figure 11 Encoder Circuit Figure 12 Decoder Circuit

In the ECC waveform as Figure 13 shows, data_noise represents the data in the memory along
with the encoded check value. By decoding it, the correct data can be obtained, allowing for data
correction.

Figure 13 The ECC Waveform

II. UDA (User Defined Algorithm)

1. Feature Introduction
As technologies evolve, newly developed advanced process memories combined with commonly used
algorithms can result in longer testing time and repetitive testing behaviors. For example, if the user
selects both the March C+ (14N) and March C- (11N) algorithms, the testing time will be 25N.

March C+ >(wa) >(ra,wb,rb) >(rb,wa,ra) <(ra,wb,rb) <(rb,wa,ra) <(ra)

March C- >(wa) >(ra,wb) >(rb,wa) >(ra) <(ra,wb) <(rb,wa) <(ra)

iSTART-TEK has developed the User Defined Algorithm (UDA) feature, which allows users to customize
and edit algorithms. With this feature, repetitive elements can be removed, resulting in a shortened
testing time of 23N.

>(wa) >(ra,wb,rb) >(rb,wa,ra) <(ra,wb,rb) <(rb,wa,ra)

 >(ra,wb) >(rb,wa) >(ra) <(ra,wb) <(rb,wa) <(ra)

8

UDA is represented in the form of components, which can be rearranged and combined to generate
new algorithms as shown in Figure 14.

Syntaxes Functions

UP Address counted up from 0

DN Address counted down from the maximum value

ADD_INC Address+1 or Address-1 decided by UP or DN

N No operation

R(A) A is marked as the processed pattern for the Read operation

W(A) A is marked as the processed pattern for the Write operation

S
The memory testing has entered the sleeping state, and the sleeping

time is defined by users.

, Segment different operations

; Complete the present elements

Figure 14 UDA is Represented in the Form of Components

UDA provides a friendly graphical user interface (GUI) that enables users to quickly get started. As shown

in Figure 15.

Figure 15 UDA’s Graphical User Interface

 Usage Methods

Through the GUI of UDA, users can quickly set the components. Figure 16 displays an overview of
the blocks in the GUI, enabling easy configuration of test patterns, read/write operations, and
address increments/decrements. Once completed, it generates the corresponding algorithm.

9

Figure 16 Overview of GUI

圖中文字翻譯：

Background 設定→Background Settings

讀寫操作設定→Read/Write Operation Settings

演算法編程設定→Algorithm Programming Settings

設定 Address 與讀寫操作方式加入至演算法中→Configurate the Address Read/Write Operation Method

into the Algorithms

Take a March C algorithm as an example: After completing the algorithm settings with the GUI, click the
UDA file, and the algorithm setting results will be displayed. Then chick “Export” to export the algorithm as
a .txt file. Lastly, in the .bfl configuration file, specify the paths of the aforementioned .txt files. Once
completed, the BIST circuit for this algorithm can be generated as shown in Figures 17, 18, and 19.

10

Figure 17 Configuration of March C Algorithm

Figure 18 Export the Algorithm

Figure 19 Configuration of a UDA File

Authored by iSTART-TEK

