Customized Design of Exclusive Features for Automotive Electronics

With the global trend towards intelligent and electric vehicles, the reliability testing and safety features of
chips for automotive electronics are becoming increasingly important, so that they can meet the AEC-Q100
specifications and enter the automotive market. iSTART-TEK's START™ v3 not only provides numerous
memory testing functions and high-efficiency memory repair technologies, but also offers exclusive
customized automotive electronic features, such as POT 2.0 (Power-On Test), Error-Correcting-Code (ECC)
and User-Defined Algorithms (UDA). These features enable chip developers to accurately detect memory

defects in automotive chips according to their applications, and enhance driving safety.

I. POT 2.0 (Power_On Test)

1.

Feature Introduction

POT 2.0 is an essential function for electronic products, espacially those related to automotive and
safety. It can ensure the memory testing of the hardware circuits after powered on, enabling users
to quickly find where the memery errors occur. iISTART-TEK has developed POT 2.0 with memory
testing and repair capabilities, integrated into the START™ v3 tool. This allows users to easily
incorporate memory POT functionality circuits into their designs, offering the following activation

methods.

® ROM: Storing test commands in ROM

® RTL: Storing test commands in ROM described by RTL
® Basic: Providing host_MEN signals for memory testing
o

CPU: Controlling the BIST circuit by issuing test instructions through the CPU

The LATCH_GO diagnostic feature can be applied by

marking a unique memory error number to

each memory bit, facilitating quick identification of memory error locations. The Error Injection
feature enables the insertion of error information into the Test Pattern Generator circuit to verify
the correctness of the BIST circuit, significantly increasing its reliability. Additionally, when using
POT 2.0, if new memory errors are detected, memory repair can be performed.

Usage Methods
START™ v3 (BFL) Settings:

Set the activation methods through the set pot options, as shown in Figure 1.

set parallel_on = no # yes, no

set reduce address simulation = no # yes, no

set rom half access = no # yes, no

set rom_result_shiftin = yes # yes, no

set rom result shiftout = no # yes, no

set specify clock mux = no # yes, no

set specify dt_port_value = no # yes, no

ff: E Ef:fijne = 1o # ves [0

set pot = rom # no, rom, hw rom, basic , cpu |}
SeL ecc rTuncrion = no 7 yes, No

Figure 1 POT Setting Options

. set pot = rom or set pot = hw_rom

Set the pot option as “rom”, and the testing commands will be stored in ROM. Set the pot option
as hw_"rom”, and the testing commands will be stored in the ROM described by RTL, also known

as Hardwired ROM. Lastly, complete the BFL and
circuits and pins for use.

BII workflow to generate the corresponding

POT consists of three main modules: ROM Memory/Hardwired ROM, ROM Controller, and

MBIST/MBISR, as shown in Figure 2.

Firstly, after receiving the commands of executing the POT function, the ROM Controller will read
the testing commands stored in the ROM memory/ Hardwired ROM. Next, it will send the control
signals to MBIST to start memory testing. If memory errors are detected, MBISR will automatically
execute the repair workflow.

,,jOVM interface‘> ROM EimfisfsnaL MBIST/
Controller MBISR

(Hardwired ROM (BISR.v)
or ROM memory)

Figure 2 POT Modules

Figure 3 shows the waveform of POT-related signals. SYS_POT is the enable signal for POT.
Once the signal is activated, the ROM Controller reads the test instructions from ROM
memory/Hardwired ROM and initiates memory testing and repair. The test results can be
obtained from the signals MGO, MRD, and RGO.

5YS_POT
RP_ROM_CEN
RP_ROM_O[2330]

RF_ROM_ADDRC1:0]1

INTEG_RP _def ault._HGO
INTEG_RP_default_MRI
INTEG_RP _default._RGO
INTEG_top_default_HMGO

INTEG_top_default _MRD

Figure 3 The Waveform of POT-related Signals

In the MBIST/MBISR signal lines of POT= "rom" or "hw_rom", n represents the controller number
and m represents the repair controller number, as shown in Figure 4.

Name Direction Width Description
SYS_READY input 1 System boot is ready to enable
BISR logics (hard repair only)

1’b1: Ready to load data from
NVM storage)

SYS_POT input 1 Enable Power on test (normal
function test only)
BOOT_CFG_DONE | output 1 The shifting of configuration data

is completed (hard repair only)

1’b1: the scan is completed
1’b0: the scan is progressing
RCK input 1 Clock signal for storage device,
BISR logics and configuration
buffer.

RRST input 1 Reset signal for storage device,
BISR logics and configuration
buffer

MRDn output 1 Indicates if the test is ended or
not.

0: The test is uncompleted

1: The test is ended

MGOn output 1 Indicates if the test is failed or
not.

0: The test is failed

1: The test is passed

RGOm output 1 Indicates if the logic can be
repaired or not.

0: The logic cannot be repaired.

1: The logic can be repaired.
(MBISR CTR only.)

Figure 4 The MBIST/MBISR Signals of rom and hw_rom

Then, the Verilog file containing the test commands stored in ROM will be generated. It will
generate the corresponding commands based on the BIST functions designed by users, as shown
in Figure 5. The Verilog program example in Figure 6 shows the test commands stored in the ROM
described by RTL.

@00000000 000000039 // digital_top_with_pad_digital_top_default [TRANS : O,
'PRLLON : 1', "GRP_EN : 11', '"MEB_ID : 00', 'MEN : 1']
@00000001 000359b6¢ // COLD_SIGNATURE_T {'ctr_name":
'digital_top_with_pad_digital_top_default', 'rom_tpg_position':
'digital_top_with_pad_digital_top_default_tpg_2_1_1'}
@00000002 0009442a9 // GOLD_SIGNATURE_2 {'ctr_name":
'digital_top_with_pad_digital_top_default', 'rom_tpg_position':
'digital_top_with_pad_digital_top_default_tpg_2_1_2'"}
@00000003 000b204e4 |/ GOLD_SIGNATURE_3 {'ctr_name":
'digital_top_with_pad_digital_top_default', 'rom_tpg_position':
'digital_top_with_pad_digital_top_default_tpg_2_1_3"}

Figure 5 The Test Commands Stored in ROM

Copyright © ISTART-TEK INC.

iISTART

module rom_24_hw (
CLK,

A,

CEN,

Q

)

input CLK;
input [2:0] A;
input CEN;
output [23:0] Q;
reg [23:0] Q;

always@(posedge CLK)
begin
if(~CEN) begin
case(A)
0 : begin
Q <= 24'h000039; // digital_top_with_pad_digital_top_default [TRANS : 0,
'PRLLON : 1", 'GRP_EN : 11", '"MEB_ID : 00", '"MEN : 1]
end
1 : begin
Q <— 24'h359b6c; // GOLD_SIGNATURE_1 {'ctr_name':
'digital_top_with_pad_digital_top_default', 'rom_tpg_position':
'digital_top_with_pad_digital_top_default_tpg_2_1_1"}
end
2 : begin
Q <= 24'h9442a9; // GOLD_SIGNATURE_2 {'ctr_name":
'digital_top_with_pad_digital_top_default', 'rom_tpg_position':
'digital_top_with_pad_digital_top_default_tpg_2_1_2'}
end
3 : begin
Q <= 24'hb204e4; // GOLD_SIGNATURE_3 {'ctr_name":
'digital_top_with_pad_digital_top_default', 'rom_tpg_position':
'digital_top_with_pad_digital_top_default_tpg_2_1_3"}
end
default : Q < Q;
endcase
end
end

endmodule

Figure 6 The Verilog Program of the Hardwired ROM

4

Copyrig ht © ISTART-TEK INC.

set pot = basic

When the pot option is as “basic”, the host_MEN signal line will be generated for users to activate
memory testing. The results can be obtained through the MGO, MRD and RGO signals. The signal

list generated by the "basic" option is shown in Figure 7.

Signal Name Description
* _host_MEN: Indicates to enable or disable MBIST/MBISR.
* MRD Indicates if the test is ended or not.
0: The test is uncompleted
1: The test is ended
* MGO Indicates if the test is failed or not.
0: The test is failed
1: The test is passed
* RGO Indicates if the logic can be repaired or not.
0: The logic cannot be repaired.
1: The logic can be repaired. (MBISR CTR only.)

Figure 7 The MBIST/MBISR Signals of the “basic” Option

set pot = cpu

By setting the "cpu" option in POT, users can directly control the BIST circuit, and the settings
can be adjusted through the .bfl file, as shown in Figure 8. Additional features can be added,
such as the diagnosis_memory_info function, which includes the LATCH_GO signal, allowing
users to quickly identify the memory number where an error occurs. Figure 9 shows an example

that an error occurs in memory number 6.

set diagnosis support = no # yes, no
set diagnosis data sharing = no # yes, no
set_dlagnosis memory into = No # yes, no
set diagnosis time info = no # yes, no

Figure 8 The Latch_GO Setting on BFL

i B top_default_Mo0

top_default_HRD

p_default_LATCH_GOLT:0]

Ve & top_default_LATCH_GOLT]

@ B top_default_LATCH_GOLE]

el B top_default_LATCH_GOIS]

Ve 2 top_default_LATCH_GOL41

e =B top_default_LATCH_GOL3]

lefault_LATCH_GOCZ]

Ve 2 top_default_LATCH_GOC1]

& & top_default _LATCH_GOL0]

Figure 9 LATCH_GO Waveform

I1. Error-Correcting-Code (ECC)

1. Feature Introduction
Error-Correcting-Code (ECC) is an encoding method that allows for the detection and correction of
errors within a specified transmission time. It can be applied to various data transmission and storage
operations, where the receiving end uses the encoded data to detect and correct transmission errors.
In the context of memory, ECC to check the correctness of data stored in memory through circuits.

Memory failures can have serious consequences in various industries, including automotive, industrial,
medical, and communication fields. The functionality of ECC can improve the stability and reliability of
chips during operation.

iISTART-TEK provides ECC functionality that enables users to detect 2 bits of errors and correct 1 bit
of errors. When using ECC, the memory needs to allocate space for parity check to reconstruct the
corrected data. The required space can be calculated as 27! > Parity + Data bit. For example, if
the memory data length is 22 bits, 6 bits of ECC space can be used to check 16 bits of data.

2. Usage Methods
START™ v3 (BFL) Setting:
Use the "set ecc_function" option, and set the ECC name using the "set ecc_prefix" command, as
shown in Figure 10.

| set ecc _prefix = top_ECC |
set Q pipeline = no
set repair mode = yes
set soft repair = yes
[Set ecc tunction = yes #ecc tunction|]

set skip bist path =
Figure 10 ECC Setting Options

After executing the BFL and BII workflow, it will generate the encoder and decoder circuits with
the ECC function, as shown in Figure 11 & 12.

Figure 11 Encoder Circuit Figure 12 Decoder Circuit
In the ECC waveform as Figure 13 shows, data_noise represents the data in the memory along

with the encoded check value. By decoding it, the correct data can be obtained, allowing for data
correction.

data_noizel31:0]

u correct_datal24:0]

Figure 13 The ECC Waveform

II. UDA (User Defined Algorithm)

1. Feature Introduction

As technologies evolve, newly developed advanced process memories combined with commonly used
algorithms can result in longer testing time and repetitive testing behaviors. For example, if the user
selects both the March C* (14N) and March C (11N) algorithms, the testing time will be 25N.

March C+ >(wa) >(ra,wb,rb) >(rb,wa,ra) <(ra,wb,rb) <(rb,wa,ra) <(ra)

March C- >(wa) >(ra,wb) >(rb,wa) >(ra) <(ra,wb) <(rb,wa) <(ra)

iISTART-TEK has developed the User Defined Algorithm (UDA) feature, which allows users to customize
and edit algorithms. With this feature, repetitive elements can be removed, resulting in a shortened
testing time of 23N.

>(wa) >(ra,wb,rb) >(rb,wa,ra) <(ra,wb,rb) <(rb,wa,ra)

>(ra,wb) >(rb,wa) >(ra) <(ra,wb) <(rb,wa) <(ra)

UDA is represented in the form of components, which can be rearranged and combined to generate
new algorithms as shown in Figure 14.

Syntaxes Functions

UP Address counted up from 0

DN Address counted down from the maximum value

ADD INC Address+1 or Address-1 decided by UP or DN

N No operation

R(A) A is marked as the processed pattern for the Read operation
W(A) A is marked as the processed pattern for the Write operation

The memory testing has entered the sleeping state, and the sleeping
time is defined by users.
, Segment different operations
; Complete the present elements
Figure 14 UDA is Represented in the Form of Components

S

UDA provides a friendly graphical user interface (GUI) that enables users to quickly get started. As shown
in Figure 15.

UDA Editor x
UDA Serting | UDA File |
~Basic ~Algorithm

Algorithm Name I rINST
Memory Type [SP ~ Direction IUP v|

~Background / Partern———————— Command IW(AL 'I Add

New Backgmundl New Patternl

A I 0000 = |
“Element Clear | SLP | ok |

GenerateHW(A] 'I Add |
-

Figure 15 UDA's Graphical User Interface

Usage Methods

Through the GUI of UDA, users can quickly set the components. Figure 16 displays an overview of
the blocks in the GUI, enabling easy configuration of test patterns, read/write operations, and
address increments/decrements. Once completed, it generates the corresponding algorithm.

UDA Editor x

UDA Setting | UDA File | EEARGELE
Basic |Algorithm
3451 3 4 ft Algorithm Name I ~INST s AddressEAZEE
014 B 50 Memory Type Iﬁ Direction IUP—;| E’%ﬁzj\j‘iﬁbﬂ)\g.ﬁ
~Background / Pattern Command Im%/ﬁqj Add

Backgroundz% E| New Backgroundl New Pat[ernl

A I 0000 'l

-Element

ST b GeneratelIW(A) 'I Add |
r |

Clear | SLP | Ok |

Figure 16 Overview of GUI
& o > R
Background & &£ —Background Settings
1B 2 1R Fs & —Read/Write Operation Settings
BE A HRIZER E —Algorithm Programming Settings
2 %€ Address ERFEEIRIE S T IIA E/EE A —Configurate the Address Read/Write Operation Method
into the Algorithms

Take a March C algorithm as an example: After completing the algorithm settings with the GUI, click the
UDA file, and the algorithm setting results will be displayed. Then chick “Export” to export the algorithm as
a .txt file. Lastly, in the .bfl configuration file, specify the paths of the aforementioned .txt files. Once
completed, the BIST circuit for this algorithm can be generated as shown in Figures 17, 18, and 19.

9

Copyright © ISTART-TEK INC.

UDA Setting | UDA File |

~Basic - Algorithm
Algorithm Name W rINST
Memory Type [SP ~ Direction IW’
~Background / Pamern——————— Command |R(A), - Add
New Backgroundl New Patternl R(A),
A oo 3]
B T
~Element
Generatel Im Add |
- Ii Clear SLP | Ok |
UP:W(A):

UP:R(A),W(B);
UP:R(B).W(A);
UP:R(A);
DOWN:R(A),W(B);
DOWN:R(B),W(A);
DOWN:R(A);

Figure 17 Configuration of March C Algorithm

UDA Setting UDA File |

User Defined Testing Algorithms - march_c
{
INST UP {W(A):}
INST UP {R(A),W(B);}
INST UP {R(B),W(A);}
INST UP {R(A);}
INST DN {R(A),W(B):}
INST DN {R(B),W(A):}
INST DN {R(A);}

REPEAT PAT A (0000);
REPEAT PAT B (1111);

Figure 18 Export the Algorithm

define{user define algorithm}
set SP alg path = ./UDA/uda march 5w.txt
end define{user define algorithm}

Figure 19 Configuration of a UDA File

Authored by iSTART-TEK

10

Copyright © ISTART-TEK INC.

