iST/RT

July 2025

iSTART iReport 芯測科技電子報第 12 期

芯測科技榮獲「2025年度優秀車規芯片提供商」 殊榮,彰顯在車用電子領域的卓越實力

2025年6月19日 — 芯測科技於上海舉辦的「2025智能汽車芯片產業大會」中,榮 獲「2025年度優秀車規芯片提供商」獎項。本次大會由上海匠歆商務諮詢有限公 司、上海汽車芯片工程中心有限公司、上海智能感測器產業園、嘉定區集成電路 產業鏈聯盟聯合主辦,匯聚眾多車規芯片領域的領軍企業與技術專家。

此次獲獎充分肯定了芯測科技在車規電子領域的技術優勢。作為專注於EDA工具與IP解決方案的創新企業,芯測科技率先通過ISO 26262 TCL1 一級工具置信度認證,為車用晶片開發提供符合最高功能安全等級 ASIL D 的支援,助力客戶達成功能安全目標。

芯測科技的產品包涵UDA (使用者自定義測試演算法)、TEC (Test Element Chang)、Repair及POT (上電自我檢測)等功能,可大幅提升車用晶片的可靠性與測試效率。在車規晶片開發方面,其 eFlash 測試與修復方案尤為亮眼,成功協助多家客戶顯著縮短開發週期、提升晶片品質,並有效降低測試成本。

芯測科技對此次榮獲業界肯定深感榮幸。這不僅是對我們技術實力的高度認可, 更是對團隊持續創新精神的最佳肯定。展望未來,我們將持續精進投入車用電子 技術研發,並強化產品功能,攜手客戶共迎智慧汽車產業的嶄新未來。

「芯」疫苗問世!芯測自主研發UDA 打造SRAM全覆蓋測試方案

美國政府進一步擴大對中國地區半導體技術和EDA工具的出口限制,使得全球晶片設計產業面臨的供應風險日趨嚴峻。因應此波地緣政治帶來的不確定性,芯測科技強調,其關鍵測試演算法平台 UDA (User-Defined Algorithm) 完全由公司團隊自主開發,不依賴境外核心技術,可確保授權穩定性,為晶片設計業者提供穩定、安全的技術支援。

隨著半導體製程邁入FinFET、GAA等先進節點,SRAM的缺陷型態也如同病毒不斷變異,出現Marginal Fault、Dynamic Fault、Soft Error等新型態問題。傳統如March C這類標準測試演算法,猶如舊款疫苗,對於新型缺陷的防護力已漸顯不足。因應此艱鉅挑戰,芯測科技自主研發的使用者自定義演算法平台UDA (User-Defined Algorithm),就像一座靈活調配疫苗配方的研發基地,讓使用者根據產品特性與應用場景,自行組合最合適的測試策略,實現缺陷「全面接種」的防禦效果,確保SRAM在任何環境下都能穩定運作。

UDA平台採用圖形化操作介面與模組化設計,使用者無需編寫複雜程式碼,即可依據目標產品特性 (如高溫、低壓、低功耗)快速設計出客製化測試演算法。例如:針對高溫環境常見的Leakage Defect,可透過添加特定測試元素進行有效檢測,避免傳統演算法「遺漏感染」,導致產品後期失效。

芯測科技更進一步整合其獨有的TEC (Testing Elements Change)技術,使用者只需三個基本元素 (w, r, s),在CP與FT階段仍可靈活變化演算法的結構與深度,提升在有限測試時間內的檢測涵蓋率。與此同時,配合靜態與動態的背景控制策略,即可偵測包括SAF、TF、CF、WDF、DRDF等各類複雜缺陷。

iSTART iReport

3

此外,UDA平台亦可與芯測自家EDA工具如START™ v5與EZ-BIST整合使用,從 演算法設計到ATE Pattern產出形成一體化流程,全面提升測試自動化效率,降低 設計成本與驗證負擔。

面對AI、高效能運算、邊緣運算與車用電子等領域對記憶體品質日益嚴格的要求,芯測的UDA平台能快速針對特定缺陷生成最適化測試程序,宛如因應變異病毒的即時疫苗接種計畫,不僅提升良率,更能降低後端維修與保固風險,確保晶片在AI、車用、航太等關鍵領域的穩定運作。

特性	疫苗原理	SRAM 測試演算法
設計目的	針對人體可能感染的病毒 或細菌所設計,透過模擬 或弱化病原體來「訓練」 免疫系統。	針對記憶體中可能發生的缺陷所設計,透過模擬各 種操作來「挑戰」記憶體,找出潛在錯誤。
預防時機	能在真正的疾病發生前, 預先建立抵抗力,避免災 難性後果。	能在 IC 進入市場前,預先找出潛藏的缺陷,避免量 產後出現可靠度與功能問題。
變化與挑戰	病毒不斷變異。	製程多樣化(例如 FinFET、GAA 等先進製程推進)使 得SRAM 缺陷也出現新型態 (如 Marginal Fault, Dynamic Fault, Soft Error)。
應對方針	針對不同病毒(如 COVID、HPV、流感等) 打造不同疫苗。	根據目標產品特性 (高溫、高壓、低功耗等) 組合最合適的測試操作,打造客製化測試演算法。例如:高溫環境下易產生 Leakage Defect,就需針對這類Defect 加入特定測試 Pattern。
全面防堵 災難產生	全民接種疫苗。	全覆蓋設計的測試策略,可確保無論在何種使用情 境下 (溫度、電壓、頻率) ,SRAM 皆能正常運作。

芯測科技進行CIM研發 瞄準量子時代的資安市場

芯測科技致力於提供各類記憶體之測試與修復專用的EDA工具與IP,並針對授權客戶,提供涵蓋後端流程的一站式設計服務。

近年來,芯測科技積極投入Computing-In-Memory (CIM)架構的研發,重新定義AI運算的能效極限。

我們正在開發的SRAM-based CIM架構具備8-bit運算精度與極低功耗,並具延展性,可進一步支援RRAM架構設計,滿足不同應用場景的需求。

面對量子時代的資安挑戰,芯測科技亦率先導入格點密碼與NTT運算優化技術,透過CIM架構加速後量子密碼演算法,為智慧裝置與車用系統提供長效且穩固的安全保障。

芯測科技,除了進行SRAM-based CIM的開發,同時也提供CIM的測試電路開發環境,以創新的記憶體運算技術,驅動 AI 演算法更快、更強、更節能。

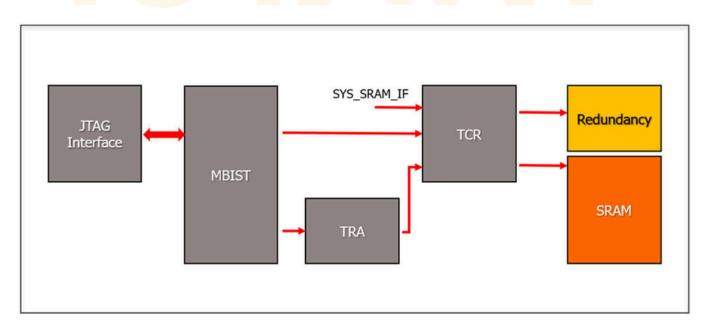
芯測科技成功通過 ISO/IEC 27001:2022 資訊安全管理系統認證

芯測科技專注於記憶體測試與修復解決方案的EDA工具、IP領域與雲端服務平台 iSTART-Cloud,獨家供應記憶體測試與修復解決方案,提供ASIC設計服務及雲端 EDA工具服務平台iSTART-Cloud,近期,芯測科技成功通過「國際認證機構-法 國標準協會AFNOR」之ISO/IEC 27001:2022資訊安全管理系統驗證。

芯測科技的雲端EDA工具服務平台對資訊安全管理有極高的要求,在會員網站安全防護上,除了透過密碼登入,還需搭配APP進行使用者的生物識別驗證,建立會員網站的安全性。此外,透過VPN連線設定,從瀏覽器連結至雲端桌面環境,可確保資料不受網路攻擊或竊取。在檔案上傳及下載的部分,使用者將檔案上傳到雲端後,當MBIST電路完成時,即可輕鬆地將檔案下載至本地機器中。不僅省下安裝及設定環境變數的步驟,還能讓使用不再受限。

ISO/IEC 27001:2022為世界公認的資訊安全管理標準,涵蓋風險評估、存取控制、數據保護及持續優化等關鍵領域。芯測科技透過系統化導入該標準,全面強化資訊安全政策與管理方針,確保客戶資料及企業營運資訊的機密性、完整性與可用性,有效保護客戶的資料安全與隱私權。

此次通過ISO/IEC 27001:2022資訊安全管理系統驗證,不僅是對芯測科技在資訊安全管理能力上的肯定,更代表芯測科技能滿足客戶、合作夥伴和法規機構對資訊安全的要求,確保各項資訊安全管理制度能貫徹執行與監管,使各項數位資產免於因外在威脅或內部不當管理遭受遺失、破壞或洩密等風險。



利用START™ v5完成Redundancy 和Stand-alone並存的SRAM修復技術

隨著製程的演進,人工智慧的蓬勃發展,記憶體的需求量逐漸升高,在此情況下,帶有修復功能的記憶體越發重要,但是如果一開始所使用的記憶體沒有自帶redundancy區塊,便無法進行修復,發生錯誤時只能將其拋棄,為此START™v5提供了相對應的解決方式,透過Stand-Alone的功能,產生redundancy區塊,讓原先無法修復的記憶體,透過這個區塊進行修復,並且可以依照使用者,設計redundancy區塊的大小,來符合使用者的需求。

Stand-Alone Repair架構圖

架構如圖一,與之前的MBIST一樣,主要在於此功能會新增redundancy區塊,這區塊主要用來替換SRAM錯誤的地址,透過MBIST值錯SRAM,將錯誤資訊存至TRA中,透過TCR進行切換,TCR會負責將系統與BIST進行切換,以此來保證在系統執行的情況下,操作到錯誤的地址時,也能夠進行修復。

圖一、Stand-Alone Repair架構圖

工具設定方式

Stand-Alone需要先填寫rmt (redundancy mapping file)檔,裡面會描述要做 Stand-Alone的memory hierarchy以及memory的repair資訊,檔案範例如圖二,若再redundancy memory hierarchy設定為istart的話,工具會產生對應 memory的redundancy module,方便使用者不用額外編寫redundancy的電路。

```
# hierarchy mapping format
# redundancy memory hierarchy(xx.x) = repair memory hierarchy(xx.x)
# ex. top.u_repair1_redundancy = top.u_repair1_ram
istart = top.sp_rpram

# repair memory format
# [memory module name] : redundancy_type = row, redundancy_count = 2(num)
# ex. [SL180_8192X8X4CM32] : redundancy_type = row, redundancy_count = 2
[SL180_8192X8X4CM32] : redundancy_type = row, redundancy_count = 2
```

圖二、rmt (redundancy mapping file)檔範例

編寫完rmt檔案後,需要在BFL的設定檔中,設定圖三的選項。

```
set redundancy_mapping = ./redundancy_mapping.rmt
```

圖三、BFL 撰項

模擬方式

工具會產生相對應的fault module,因為在模擬fault時,會同時存在一般memory以及本身帶有redundancy的memory,所以在模擬時需要define REPAIR,確保我們工具產生的fault module只作用在Stand-Alone memory上。

```
`ifdef FAULT
   `ifdef REPAIR
        SRAM
   `else
        SRAM_f
   `endif
`else
        SRAM
`endif
```

```
`ifdef FAULT
Stand_Alone_SRAM_f
`else
Stand_Alone_SRAM
`endif
```

圖四、Fault module define

流程分為BFL以及BII,在相對應的流程都會產生模擬的環境,BFL階段模擬指令及結果如圖五、圖六,BII階段模擬指令及結果如圖七、圖八。

make controller_name FUNC=tb_INS_RP_f

圖五、BFL模擬指令

Test Result: Failed!

Repairing and Re-testing

Test Result After Repair: Pass!

圖六、BFL模擬結果

make integ_name FUNC=tb_f

圖七、BII模擬指令

圖八、BII模擬結果 (Soft repair)

車規級別晶片的SRAM測試算法三部曲之 漫談車用電子晶片的DPPM

DPPM (Defective Parts Per Million,每百萬顆中的不良品數)是衡量車用晶片品質與可靠度的核心指標。當一顆晶片出現在煞車系統或自動駕駛控制單元中時,即使僅有百萬分之一的故障機率,也可能釀成無法挽回的事故。因此,從設計、製程、測試到驗證,每個環節都要以極低的 DPPM 為目標。

本集將介紹不同晶片類型 (如 Power IC、MCU、雷達感測 IC)在量產與保固期內的DPPM目標、Tier 1與OEM對品質的實際要求,以及 AEC-Q100、IATF 16949、ISO 26262等國際標準如何影響業界的DPPM管理策略。透過完整的背景脈絡與數據整理,幫助觀眾理解車用晶片品質控管的嚴謹程度與實務做法。

重點速覽

- DPPM的背景與指標期望
- 市場召回的DPPM期望
- 國際標準與規範參考
- 不同晶片類型的DPPM指標
- DPPM管理的背景脈絡

<u>▶ 觀看完整影片</u>

車規級別晶片的SRAM測試算法三部曲之 車用晶片面臨的SRAM失效種類

在汽車應用中,SRAM扮演著暫存與高速緩衝的重要角色,但它也暴露在極端溫度 與電壓環境下,容易出現各種潛在失效。對於需達到ISO 26262 ASIL-C或ASIL-D 的車用晶片來說,任何一種記憶體缺陷都可能導致系統功能安全風險。因此,我 們必須了解並覆蓋所有潛在的SRAM失效類型。常見的失效大致可依操作行為分為 三類:

寫入操作

- 固定型故障 (Stuck-At Fault, SAF):儲存單元無法被寫成0或1,通常是由於上拉電阻或下拉電阻的電晶體損壞。
- 寫入干擾錯誤 (Write Disturb Fault, WDF): 對某個cell寫入時,鄰近的cell意外被翻轉。
- 存取故障與開路故障 (Acc<mark>es</mark>s Fau<mark>lt, Open Fault)</mark>:如wordline或bitline導通 異常,導致訊號無法正確寫入。

讀取操作

- 固定型故障:與寫入類似,但這裡是感測電路錯誤,導致讀取值一直是錯誤狀態。
- 讀取干擾錯誤 (Read Disturb Fault, RDF): 讀取動作意外改變cell內資料,特別是資料保留力弱的cell。
- 偽讀破壞故障 (Deceptive Read Destructive Fault, DRDF):表面讀取成功,
 但實際已悄悄破壞cell內的資料。
- 資料保持錯誤 (Data Retention Fault, DRF): 在特定時間後資料自動消失,
 常與漏電或閂鎖效應較弱有關。

寫入加讀取的組合操作

- 轉換錯誤 (Transition Fault, TF): cell無法從0切換到1,或1切換到0,需透過交替寫入與讀取來偵測。
- 動態錯誤 (Dynamic Fault):例如兩次寫入與兩次讀取的操作中才會出錯,需仰賴如March C-、March SS等測試演算法來捕捉。

針對車用SoC的環境與可靠度要求,以上這些失效類型都是高風險,必須一一覆蓋。例如WDF、RDF、TF與DRF在高溫、高壓或低溫、低壓下都會更加嚴重,特別需要透過客製化測試演算法來針對性覆蓋。

芯測科技設計一套專門針對這些失效類型的SRAM測試算法。利用UDA (使用者自定演算法)與TEC (Test Element Change)技術,可以靈活產生具備高覆蓋率的測試序列,不但能強化車用晶片品質,也能達成ASIL-C/D等級的功能安全要求。

▶ 觀看完整影片

SRAM測試演算法中的讀寫操作與缺陷類型

- 寫入操作主要可以偵測出固定型故障、寫入干擾錯誤、存取故障,以及開路故障。
- 讀取操作則能偵測出感測階段的固定型故障、讀取干擾錯誤、偽讀破壞故障, 以及保存故障。
- 結合寫入和讀取的序列則可以偵測出轉換故障、動態故障,以及邊界穩定性問題。

為了執行上述特定的讀取和寫入操作,並有效偵測各種缺陷,iSTART-TEK的TEC和UDA功能提供了強大的支援。

UDA是一個可配置的SRAM測試平台,能夠讓使用者依需求設計特定的讀寫操作序列,並且支援各類March測試。

TEC則提供了更高的靈活性,即使在CP階段後,仍可透過樂高堆疊式的模組化測 試元素,調整或微調測試演算法。

這兩項技術結合在一起,使我們能夠有效地偵測因電壓與溫度變化而產生的各種 SRAM缺陷。

▶ 觀看完整影片

如何改寫測試演算法的架構?

科技發展日新月異,傳統的演算法在晶片下線後無法修改演算法行為,導致有些晶片雖然通過了CP測試 (Chip Probe Test,裸晶測試)和FT測試 (Final Test,最終測試),但在使用過程中仍有可能出現缺陷的問題。若在此時新增測試演算法,將會增加不少的測試時間和成本。因此,演算法的彈性化與複雜度成為一門重要的課題。

Testing Elements Change (TEC)

芯測科技所開發的 TEC (Test Element Change) 以 GUI (圖形化操作介面)將演算法的行為元素化,藉由元素的重新排列,組合成新型態的演算法。即使客戶未採用芯測科技的 MBIST 電路,也可以保留原始的 BIST 架構,並以 EZ-TEC SRAM BIST IP 的形式插入原始電路,為客戶的整體應用帶來極大的便利性和彈性。當使用者發現 SRAM 有問題卻無法以原始 MBIST 電路偵測出 Defect,在不修改 SRAM 架構的前提下,使用者可以透過 EZ-TEC SRAM BIST IP 增加新的測試演算法來解決 Defect 問題,有效提高良率。

EZ-TEC SRAM BIST IP 是基於芯測科技美國專利「METHOD FOR GENERATING AN MEMORY BUILT-IN SELF-TEST ALGORITHM CIRCUIT」的元素化架構,每個元素都有相對應代碼,透過代碼即可產生新的演算法。使用者只需準備『四』個元素,就可以組合成常見的 March C+ 演算法,如下圖。

```
PRL ON = 1;
GRP EN = 3'b001; → SP SRAM Group Enable
MEB ID = 1'b0;
                    → Pattern 0x0F → 0x05A
BG = 2'b00; -
                                              r=ra, R=rb, w=wa, W=wb
/* Simulation */
ALG CMD0 = 6'b0 1 1100
                                    >(wa)
                                11
ALG\_CMD1 = 6'b|0||1||1001|; rWR
                                    >(ra,wb,rb)
                                    >(rb,wa,ra)
<(ra,wb,rb)
11
                                                         March C<sup>+</sup>
ALG CMD3 = 6'b1 1 1 1001; rWR
                                11
ALG CMD4 = 6'b|1||0||0010| Rwr
                                    <(rb, wa, ra)
                                //
ALG CMD5 = 6'b|1|1|1000;
                                //
                                    < (ra)
ALG CMD6 = 6'b0 1 1100; w
                                11
                                    <(wa)
                                    <(wa)
ALG CMD7 = 6'b|0||1||1100| w
                                11
ALG_CMD8 = 6'b0 1 1100; w
ALG_CMD9 = 6'b1 1 1000; r
                                    >( ra)
                                //
ALG CMD10 = 6'b1 1 1000; r
                                    |>|( r|a|)
ALG CMD11 = 6'b|1|1|1000; r
                                    >( ra)
ALG CMD12 = 6'b000000:
                                EOT should be 0.
MEN = 1;
             send command({PRL ON, GRP EN, MEB ID, BG, ALG CMD, MEN});
#cyc
```

主要優勢

- 獨立運行於任何MBIST並與現有的記憶體測試電路並存。
- 原始MBIST電路無法檢測出特殊記憶體缺陷時,可透過元素重組重新測試。
- 透過Building-Block架構能構建出最具成本效益的電路。
- 針對重要的記憶體重組新的演算法來進行測試,確保記憶體測試的覆蓋率。
- 輕鬆選擇記憶體測試演算法元素,提高晶片設計的靈活性和可靠性。
- 有效降低DPPM與測試成本。

芯測科技的EZ-TEC SRAM BIST IP提供彈性重組測試演算法。能在CP/FT階段,讓測試工程師修改測試機台的Pattern,進而提高記憶體測試的強度,為使用者帶來極大的便利性與彈性。

<u>▶ 觀看完整影片</u>

BIST與BISR對SoC的影響

BIST和BISR對SoC的影響

以近期熱門的話題ChatGPT為例,ChatGPT屬於AI應用,AI處理需要透過高端的CPU或GPU來做運算,而這些複雜的運算需要使用大量的記憶體,來確保記憶體的正常運作。SoC從晶圓製造廠出來後,需要透過BIST來做檢測,當檢測到記憶體有問題時,再用BISR來修復。此外,AI的晶圓需採用先進的製程來製造,製造過程中可能會發生靜態失效或動態失效的問題。

BIST和BISR使用方式

BIST自我檢測電路可精準地將靜態失效和動態失效檢測出來,但只能檢測出瑕疵的部分。若要將壞的晶圓變成可以使用的chip就需要透過修復方案BISR將壞的記憶體取代,並使用好的Redundancy記憶體讓晶圓恢復正常運作。

BIST和BISR主要優勢

芯測科技在BIST和BISR上擁有將近40項的專利,其中透過多樣化且高執行效率的 記憶體測試演算法所產生的BIST和BISR電路面積也是最小的。另外,透過客戶使 用反饋,證明芯測科技的EDA工具在各類型的晶片上,都能快速產生BIST和BISR 電路,協助客戶檢測出記憶體的缺陷,有效地提升客戶SoC的品質與良率。

<u>▶ 觀看完整影片</u>