iST/RT

START™ Quick Start Guide

v2.3

CONTENTS

1.	START™ Tool Environment Setup	1
	1.1. The Contents in the START™ Package	1
	1.2. Untar Tarballs in the START [™] Package	2
	1.3. Set Up the START [™] License	2
	1.4. Set Up the Environment	3
	1.5. Set Up the Alias in START [™]	3
	1.6. iSTART License Update	4
2.	BFL Flow	5
	2.1. Untar the Example Case	5
	2.2. Check If the START [™] Tool Workable	
	2.3. Create a FileList File (*.f)	
	2.4. Memory Checking by START [™] (Optional)	
	2.5. Generate and Set a BFL File	
	2.6. Execute START [™] with the BFL File	
	2.7. Setting a Memory Info File (Optional)	
	2.8. Using a Memory Info File as Default Memory Grouping	
3.	Simulation	
	3.1. Self-Simulation	
	3.2. Inserted Simulation	
	3.3. Simulation with the Repair Function	16
	3.4. Simulation with Fault Memory Models	
4.	Synthesis	
5.	Appendix: Memchecker Usage	20

LIST OF FIGURES

Figure 2-1	START [™] Command Option	5
Figure 2-2	Example of a *.f File	6
Figure 2-3	Generate BFL File	7
Figure 2-4	BFL File Example (1)	8
Figure 2-5	BFL File Example (2)	8
Figure 2-6	Grouping Information	9
Figure 2-7	Auto-Insertion Information	9
Figure 2-8	Memory Info Setting Information	10
Figure 2-9	memory_list Option	11
Figure 2-10	Grouping Information with Memory Info File	11
Figure 2-11	Auto-Insertion Information with Memory Info File	12
Figure 3-1	Testbench Architecture of Self-Simulation	13
Figure 3-2	Delay Parameter	14
Figure 3-3	Self-Simulation Result	
Figure 3-4	Testbench Architecture of Inserted Simulation	15
Figure 3-5	Inserted Simulation Result	
Figure 3-6	Simulation Waveform of Fault Memory Models	17
Figure 3-7	Example of Error Bit Definitions	
Figure 4-1	Synthesis Output of top_default Controller	19
Figure 5-1	Memcheker Information	20

1. START™ Tool Environment Setup

1.1. The Contents in the START[™] Package

The START[™] tool package includes the following items:

- **Demo case:** NDAcase.tar.gz The demo case folder contains an example case. Users can use this demo case to get familiar with the START[™] tool.
- DOC

The DOC folder contains all START[™]-related documents for designers' reference.

• License:

It contains the START[™] tool license system. The file name is like LM-CentOSx.x-x86_64-xxxx.tar.gz. Before manipulating the START[™] tool, users have to set up this license to their license servers. After setting up ISTART_LICENSE_FILE environment variables and invoking the license file, users can launch the START[™] tool successfully.

• START[™] tool:

In the START[™] package, the tool file name is like START-CentOS-x.x-x86_64develop-xxxx.tar.gz. Users can extract this tarball to the working server and setup alias. Then, users can utilize the START[™] tool to generate BIST/BISR circuits and integrate them with users' designs.

1.2. Untar Tarballs in the START[™] Package

There are two tarballs in the START[™] package. Users can follow the instructions below to extract these tarballs and untar them in the Linux system.

• STARTTM License Manager:

The name of the START TM license manager is similar with LM-CentOS-x.x- $x86_{64}$ -xxxxx.tar.gz. Users can create a folder in the license server to store this license tarball. Then, use the following command to extract.

\$ tar xvf LM-CentOS-x.x-x86_64-xxxxx.tar.gz

After decompressing correctly, users can find the following files:

- (1) iSTART_lic_2023xxxxx.lic
- (2) Imgrd
- (3) Imutil
- (4) istart

• START[™] tool:

The name of the START[™] tool is similar with START-CentOS-x.x-x86_64develop-xxxx.tar.gz. Users can create a folder in the workstation to store this tool tarball. Then, use the following command to extract.

\$ tar -xvzf START-CentOS-x.x-x86_64-develop-xxxx.tar.gz

1.3. Set Up the START[™] License

- Please put istart together with Imgrd in the same folder.
- Execute the following command under the folder LM-CentOS-x.x-x86_64
 \$./Imgrd -c iSTART_lic_2023xxxxx.lic
- The way to confirm START[™] license launched:
 \$./Imutil Imstat -a

1.3.1 Kill Previous Registered License

iSTART tools have already adopted a new Flexnet license system. If users have the previous license system in their own license server, please refer to the following steps to terminate the existing license and iSTART_LIC_FILE.

- 1. \$ ps -ef | grep 'lmInvoke'
- 2. \$ kill #license thread
- 3. \$ unset iSTART_LIC_FILE

1.4. Set Up the Environment

Set up the environment with ISTART_LICENSE_FILE for invoking the license server.

- Bash Shell: \$ export ISTART_LICENSE_FILE=4141@hostname Or \$ export ISTART_LICENSE_FILE=4141@IP
- C Shell (Tcsh): \$ setenv ISTART_LICENSE_FILE 4141@hostname Or \$ setenv ISTART_LICENSE_FILE 4141@IP

1.5. Set Up the Alias in START[™]

Set the START[™] tool alias names to easily invoke START[™] at any working folder. The following shows the START[™] alias settings in Bash shell & C shell.

- Bash Shell: \$ alias start=/usr/home/tools/START-CentOS-6.5-x86_64-xxxxx/bin/start
- C Shell (Tcsh): \$ alias start /usr/home/tools/START-CentOS-6.5-x86_64-xxxxx/bin/start

1.6. iSTART License Update

Once the license cannot be invoked successfully, please use <u>lmutil Imdown</u> to turn off the license server. After the iSTART license is off, please execute <u>lmgrd</u> with the new license again.

- \$./Imutil Imdown
- \$./Imgrd -c iSTART_lic_2023xxxxx.lic

2. BFL Flow

If it is the first time executing START[™], here is an example case for users to understand the BFL (BIST Feature List) flow. Please note that this evaluation package, NDAcase, is designed only for the design of a single clock domain.

2.1. Untar the Example Case

\$ tar xvzf NDAcase.tgz
\$ cd NDAcase

2.2. Check If the START[™] Tool Workable

Use the following command under the execution folder.

\$ start --help

(c) Copyright 2009 -	2019 by iSTART-Technologies, Inc.			
All rights reserved				
START - SRAM Built-	in Testing and Repairing Technology : ver. 2.0.13 build 2020.11			
Build 201202				
This computer program of	constitutes or contains trade secrets and confidential			
	echnologies Inc. or its licensors. This computer program is			
	law and international treaties.			
1				
usage: start [-h] [-bii	. INTEGRATE_FILE] [-bfl BFL_FILE]			
Í-f RÚN FI	LE [RUN_FILE]] [-v VERILOG_FILE [VERILOG_FILE]]			
Ĭ-W DIRĪ I	-top MODULE] [-I] [genmeminfo]			
[-integ F]	LE [FILE]] [-u FILE [FILE]] [-pm Verilog type]			
	<pre>.ttor] [faultfree] [ug UDM_FILE config_FILE]</pre>			
	ldr_1ength Data_width output_FILE] [tempgen]			
	:ker] [memlib2udm MEMLIB_FILE]			
[bflconfig [BFL_FILE]] [bilconfig [BII_FILE]]				
[pathconv work_path] [-STILOOPformat work_path]				
	hier latchgo_data meminfo] [udmgui [UDMGUI]]			
	gui [MEMINFŐ]]			
optional arguments:				
-h,help	show this help message and exit			
-bii INTEGRATE_FILE	input BII file			
-bfl BFL_FILE	input BFL file			
-f RUN_FILE [RUN_FILE	E			
	input run file(s)			
-v VERILOG_FILE [VERI	LOG_FILE]			
-	input verilog file(s)			
-W DIR	specify working path			
-top MODULE, -T MODUL	E			
	specify top module			
-I,insert	insert BIST to design			
genmeminfo	Generate meminfo file			
-integ FILE [FILE				
	input integ file(s)			
-u FILE [FILE], -				

Figure 2-1 START[™] Command Option

Copyright © 2023-2024 iSTART-TEK INC. All rights reserve.

2.3. Create a FileList File (*.f)

The easiest way to execute STARTTM is to provide a complete design and FileList file (*.f). The format of a FileList file is the same as an NC-Verilog file which includes the following items.

- Design.v (RTL or Netlist)
- Memory.v
- Standard_cell.v (when the user's design is Netlist)
- Parameter, e.g., +define+, +incdir+PATH/DIR

Figure 2-2 shows an example of a *.f file. To run *.f for this test case, NDAcase, users should add the -v option in front of each memory Verilog file.

Figure 2-2 Example of a *.f File

2.4. Memory Checking by START[™] (Optional)

START[™] assists to identify users' memory macros by executing the **memchecker** command. This command can check if users' memory models can be recognized by START[™]. For details, please refer to <u>Appendix</u> in the end of the document.

If memory models cannot be recognized by START[™], users can edit **UDM** (User Defined Memory) and then add these UDM files into the BFL file. START[™] also provides a *.udm file template, and users can modify it according to the memory models. For the details, please refer to Chapter 2 in <u>START[™] User Manual</u>.

2.5. Generate and Set a BFL File

\$ cd NDAcase
\$ start --tempgen

Please choose item 1 as Figure 2-3 shows. The MBIST/BISR Feature List (BFL) and the start_template.bfl file will be generated to the working folder.

Figure 2-3 Generate BFL File

A BFL file includes the related requirements of MBIST circuit specifications. Users can modify it based on their project requirements. Figure 2-4 and Figure 2-5 show the examples of BFL settings for this test case. Users can also refer to the ref folder in the test case package to find a BFL file example.

START[™] Quick Start Guide v2.3

iST/RT

define{OPTION}			
set verilog_path	= ./run.f		<pre># /absolute path/design.f</pre>
set user_define_memory			# /absolute path/memory.udm
set user_define_memory set top_module_name	= top		# design top
set top_hierarchy	= top		# BIST top
set clock_trace	= no		<pre># yes, no (User group instances will all be un-group when setting yes) # yes, no</pre>
set auto_group	= yes		# yes, no
set insertion	= yes		# yes, no
set integrator_mode	= no		# yes, no
set work_path	= ./mbist		# ./work
set fault_free	= no		# yes, no
set parsing_mode	= RTL_only		# RTL_only, Netlist_only
set repair_prefix	= RP		# yes, no # yes, no # yes, no # ./work # yes, no # RTL_only, Netlist_only # prefix for repair module
define{CLOCK}			
set sdc file			# /absolute path/design.sdc
<pre>define{100MHz}</pre>			" fable face pace, designible
set clock_cycle	2	= 10	# integer
set clock source	e list	= top (LK1 # top design1 CLK
end define{100MHz}			
define{10MHz}			
	2	= 100	#integer
set clock source	e list	= top (#integer CLK2 # top design2 CLK
end define{10MHz}			
end_define{CLOCK}			
define{GROUP}			
set sequencer_limit	= 60		# integer
set group_limit	= 30		# integer smaller than sequencer limit
set memory_list	= #./test.m	eminfo	# /absolute path/design.meminfo
set time_hierarchy	= 1		# O(time) < value <1(hierarchy)
set lib_path			# /absolute path/lib (Accept file dictionary)
set power_limit	= 1.0		# mW (float bigger than 0)
set hierarchy_limit	: = 0		<pre># integer smaller than sequencer limit # /absolute path/design.meminfo # 0(time) < value <1(hierarchy) # /absolute path/lib (Accept file dictionary) # mW (float bigger than 0) # integer (default: 0)</pre>
define{PHYSICAL}			
set enable_phys	ical	= no	# ves, no
			#/absolute path/design.def
set distance li	.mit —	= 1	
set distance_li set phycical_lo	gical	= 0.5	
end_define{PHYSICAL			
end_define{GROUP}			
end_define{OPTION}			

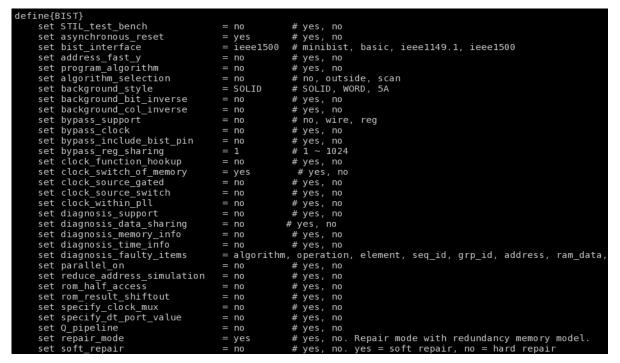


Figure 2-5 BFL File Example (2)

Copyright © 2023-2024 iSTART-TEK INC. All rights reserve.

2.6. Execute START[™] with the BFL File

The command to execute START[™] with the BFL file is:

\$ start -bfl start_template.bfl

Please note that if the location of files defined in the BFL file is a relative path instead of an absolute path, the relative path is based on the location of the BFL file.

After executing the commands above, users can see messages like Figure 2-6 and Figure 2-7 show. All the generated files will be output to the mbist folder. Users can find the start_memory_spec.meminfo file in the mbist folder, which represents the grouping architecture.

[16:36:33]	[CHECK][GROUPING]	ton default	1 002	arn 1	8 mombors
[]					
[16:36:33]	[CHECK][GROUPING]	top_default:	seq 2,	grp 1,	1 members
[16:36:33]	[CHECK][GROUPING]	top_default:	seq 3,	grp 1,	2 members
[16:36:33]	[CHECK][GROUPING]	top_default:	seq 4,	grp 1,	1 members

Figure 2-6 Grouping Information

[16:36:34]	INSERT		
[16:36:34]		======================================	==#
[16:36:34]	[INSERT] #	Biol insert ratio	#
[16:36:34]	[INSERT] #	Controller	#
[16:36:34]	[INSERT] #		#
[16:36:34]	[INSERT] #	CTR(top_default) : top	#
[16:36:34]	[INSERT] #	end(cob_actual) . cob	#
[16:36:34]	[INSERT] #	Sequencer	#
[16:36:34]	[INSERT] #		#
[16:36:34]	[INSERT] #	SEQ 1 : top.u_t1	#
[16:36:34]	[INSERT] #	SEQ 2 : top.u t1	#
[16:36:34]	[INSERT] #	SEQ 3 : top.u t1	#
[16:36:34]	[INSERT] #	SEQ 4 : top.u_t1	#
[16:36:34]	[INSERT] #		#
[16:36:34]	[INSERT] #	TPG	#
[16:36:34]	[INSERT] #		#
[16:36:34]	[INSERT] #	TPG top_default_t_1_1_1 : top.u_t1	#
[16:36:34]	[INSERT] #	TPG top_default_t_1_1_2 : top.u_t1	#
[16:36:34]	[INSERT] #	TPG top_default_t_1_1_3 : top.u_t1	#
[16:36:34]	[INSERT] #	TPG top_default_t_1_1_4 : top.u_t1 [sram_sp_1024x32] (ram_4)	#
[16:36:34]	[INSERT] #	TPG top_default_t_1_1_5 : top.u_t1	#
[16:36:34]	[INSERT] #	TPG top_default_t_1_1_6 : top.u_t1	#
[16:36:34]	[INSERT] #	TPG top_default_t_1_1_7 : top.u_t1 [sram_sp_1024x32] (ram_x)	#
[16:36:34]	[INSERT] #	TPG top_default_t_1_1_8 : top.u_t1	#
[16:36:34]	[INSERT] #	TPG top_default_t_2_1_1 : top.u_t1	#
[16:36:34]	[INSERT] #	TPG top_default_t_3_1_1 : top.u_t1	#
[16:36:34]	[INSERT] #	TPG top_default_t_3_1_2 : top.u_t1	#
[16:36:34]	[INSERT] #	TPG top_default_t_4_1_1 : top.u_t1	#
[16:36:34]	[INSERT] #		#
[16:36:34]	[INSERT] #	END	#
[16:36:34]	[INSERT] #		#
[16:36:34]	[INSERT] #=		==#
[16:36:34]	[INSERT]		
[16:36:34]	[INSERT] Pe	erform auto insertion done (0.11 sec)	

Figure 2-7Auto-Insertion Information

Copyright $\ensuremath{\textcircled{O}}$ 2023-2024 iSTART-TEK INC. All rights reserve.

2.7. Setting a Memory Info File (Optional)

After executing STARTTM, the memory info file will be output to the mbist folder. A memory info file represents the grouping architecture. If users want to adjust memory grouping according to their design requirements, modify the memory info file directly.

A memory info file includes the following items. For the detailed information, please refer to Chapter 7 in <u>Application Notes</u>.

Clock Domain:	Memory clock domain and testing the clock cycle
Memory Module:	Memory module name and memory hierarchy
Bypass/Diagnosis:	Setting the values of the bypass function and diagnosis
	function
q_pipeline:	Setting the value of the q_pipeline option
Group Architecture:	Grouping architecture information (including the controller and sequencer)

Figure 2-8 shows the content of START_memory_spec.meminfo.

[DOMAIN=top_default, cycle=100.0ns]	
[CTR] # Hier: top	
[SEQ] # No.= 1,InstanceNo= 8,SEQ_max_addr_size= 1024,Hier: top u_t1	
[GROUP] # No.=1_1	
[SP=1_1_1, byp=no, diag=no, q_pipe=no]sram_sp_1024x32	top u_t1 ram_1
[SP=1_1_2, byp=no, diag=no, q_pipe=no]sram_sp_1024x32	top u_t1 ram_2
[SP=1_1_3, byp=no, diag=no, q_pipe=no]sram_sp_1024x32	top u_t1 ram_3
[SP=1_1_4, byp=no, diag=no, q_pipe=no]sram_sp_1024x32	top u_t1 ram_4
[SP=1_1_5, byp=no, diag=no, q_pipe=no]sram_sp_1024x32	top u_t1 ram_e
[SP=1_1_6, byp=no, diag=no, q_pipe=no]sram_sp_1024x32	top u_t1 ram_w
[SP=1_1_7, byp=no, diag=no, q_pipe=no]sram_sp_1024x32	top u_t1 ram_x
[SP=1_1_8, byp=no, diag=no, q_pipe=no]sram_sp_1024x32	top u_t1 ram_y
[SEQ] # No.= 2, InstanceNo= 1,SEQ_max_addr_size= 24,Hier: top u_t1	
[GROUP] # No.=2_1	
[2P=2_1_1, byp=no, diag=no, q_pipe=no]rf_2p_24x28	top u_t1 u_2p
[SEQ] # No.= 3,InstanceNo= 2,SEQ_max_addr_size= 1024,Hier: top u_t1	
[GROUP] # No.=3_1	ter of the second
[DP=3_1_1, byp=no, diag=no, q_pipe=no]sram_dp_1024×64	top u_t1 u_dp
[DP=3_1_2, byp=no, diag=no, q_pipe=no]sram_dp_1024x64	top u_t1 u_dp2
[SEQ] # No.= 4, InstanceNo= 1,SEQ_max_addr_size= 6144,Hier: top u_t1	
[GROUP] # No.=4_1	top 11 t1 11 rom
[ROM=4_1_1, byp=no, diag=no, q_pipe=no]rom_6144_64	top u_t1 u_rom

Figure 2-8 Memory Info Setting Information

2.8. Using a Memory Info File as Default Memory Grouping

If users use a memory info file, START_memory_spec.meminfo, as memory grouping setting, they should turn off auto_group option and specify memory_list option to the path of START_memory_spec.meminfo in BFL configuration file as Figure 2-9 shows.

After executing the START[™] BFL flow with the memory info file, START[™] can automatically modify the naming and operating frequency of the BIST and BISR controllers. It also assists users to do grouping-related settings according to their requirements. There is a memory info file example in the ref folder of NDAcase. Execute START[™] with the modified BFL file which includes the modified memory info file and commands as Figure 2-9. The prompts will appear as Figure 2-10 and

Figure 2-11.

In this example case, there is one extra group for sequencer 1 and the name of the BIST controller is changed to testcase.

\$ start -bfl start_template.bfl

define{GROUP}		
set sequencer_limit	= 60	# integer
set group_limit	= 30	# integer smaller than sequencer limit
set memory_list	= ./test.meminfo	<pre># /absolute path/design.meminfo</pre>
set time_hierarchy	= 1	# 0(time) < value <1(hierarchy)
set lib_path		# /absolute path/lib (Accept file dictionary)
set power_limit	= 1.0	# mW (float bigger than 0)
set hierarchy_limit	= 0	# integer (default: 0)

[17:39:24]	[CHECK][GROUPING]	testcase:	seq 1,	grp	1,	5	members
[17:39:24]	[CHECK][GROUPING]	testcase:	seq 1,	grp	2,	З	members
[17:39:24]	[CHECK][GROUPING]	testcase:	seq 2,	grp	1,	1	members
[17:39:24]	[CHECK][GROUPING]	testcase:	seq 3,	grp	1,	2	members
[17:39:24]	[CHECK][GROUPING]	testcase:	seq 4,	grp	1,	1	members
F	F						

Figure 2-10 Grouping Information with Memory Info File

[17:39:25]	[INSERT]		
[17:39:25]	[INSERT] #=	======================================	===#
[17:39:25]	[INSERT] #		#
[17:39:25]	[INSERT] #	Controller	#
[17:39:25]	[INSERT] #		#
[17:39:25]	[INSERT] #	CTR(<mark>testcase</mark>) : top	#
[17:39:25]	[INSERT] #		#
[17:39:25]	[INSERT] #	Sequencer	#
[17:39:25]	[INSERT] #		#
[17:39:25]	[INSERT] #	SEQ 1 : top.u_t1	#
[17:39:25]	[INSERT] #	SEQ 2 : top.u_t1	#
[17:39:25]	[INSERT] #	SEQ 3 : top.u_t1	#
[17:39:25]	[INSERT] #	SEQ 4 : top.u_t1	#
[17:39:25]	[INSERT] #		#
[17:39:25]	[INSERT] #	TPG	#
[17:39:25]	[INSERT] #		#
[17:39:25]	[INSERT] #	TPG	#
[17:39:25]	[INSERT] #	TPG	#
[17:39:25]	[INSERT] #	TPG	#
[17:39:25]	[INSERT] #	TPG	#
[17:39:25]	[INSERT] #	TPG testcase_t_1_1_5 : top.u_t1	#
[17:39:25]	[INSERT] #	TPG testcase_ <mark>t_1_2_1</mark> : top.u_t1	#
[17:39:25]	[INSERT] #	TPG testcase_ <mark>t_1_2_2</mark> : top.u_t1	#
[17:39:25]	[INSERT] #	TPG testcase_t_1_2_3 : top.u_t1	#
[17:39:25]	[INSERT] #	TPG testcase_t_2_1_1 : top.u_t1	#
[17:39:25]	[INSERT] #	TPG testcase_t_3_1_1 : top.u_t1	#
[17:39:25]	[INSERT] #	TPG	#
[17:39:25]	[INSERT] #	TPG	#
[17:39:25]	[INSERT] #		#
[17:39:25]	[INSERT] #	END	#
[17:39:25]	[INSERT] #		#
[17:39:25]	[INSERT] #=		:===#
[17:39:25]	[INSERT]		
[17:39:25]	[INSERT] Pe	erform auto insertion done (0.08 sec)	

Figure 2-11 Auto-Insertion Information with Memory Info File

3. Simulation

3.1. Self-Simulation

Figure 3-1 shows the architecture of the testbench for self-simulation. This selfsimulation is used to verify the function correctness of BIST and BISR circuits only. This system design is not included in self-simulation. The simulation environment is built by the make language. Users can refer to the Makefile.top_default file. This file defines commands and parameters for executing simulation.

If users want to debug with the waveform file, turn on the related dump parameters in the top_default.f file.

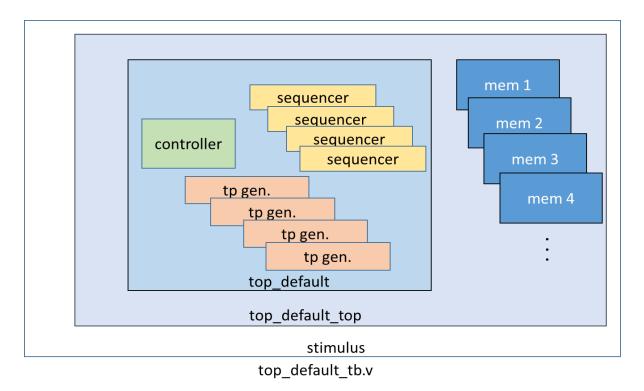


Figure 3-1 Testbench Architecture of Self-Simulation

If users adjust the clock domain, check the difference of the output file in the mbist folder. In a test case, the controller's name of the default clock domain is top_default.

The command for self-simulation is:

\$ make top_default FUNC=tb

If the timeout message, "Simulation time-out!" appears during self-simulation, users can modify the delay parameter of the block "`ifndef FAULT" in the top_default_tb.v file as Figure 3-2 shows. This delay parameter is generated by START[™] and is designed to prevent an infinite loop. Figure 3-3 shows the simulation results of self-simulation.

Note: If the user's design includes an ROM memory inside, please check the path setting of the ROM code file before executing simulation.

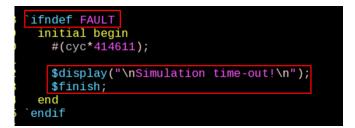
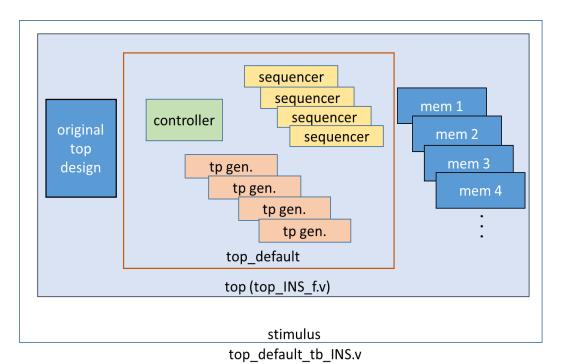


Figure 3-2 Delay Parameter

Figure 3-3 Self-Simulation Result



3.2. Inserted Simulation

Figure 3-4 shows the architecture of the testbench for the inserted simulation. The inserted simulation is to verify the function correctness of the inserted design which combines BIST circuits and users' system design. The simulation environment is built by the make language. Users can refer to the Makefile.top_default file. This file defines commands and parameters for executing simulation.

If users want to debug with a waveform file, please turn on the related dump parameters in the top_default_INS_FAULT.f file, which is the same as self-simulation. If there are several clock domains, each clock domain should be passed when doing the inserted simulation.

The command of the inserted simulation is:

\$ make top_default FUNC=tb_INS

Figure 3-4 Testbench Architecture of Inserted Simulation

If the timeout message, "Simulation time-out!" appears during the period of executing simulation, users can modify the delay parameter of the block "`ifndef FAULT" in top_default_tb_INS.v. Figure 3-5 shows the prompt of the inserted simulation.

Loading snapshot worklib.stimulus:vDone *Verdi3* Loading libsscore_ius142.so *Verdi3* : Enable Parallel Dumping. ncsim> source /usr/cad/cadence/IUS/cur/tools/inca/files/ncsimrc ncsim> run
Test Result: Pass!
Simulation complete via \$finish(1) at time 39383600 NS + 0 ./top_default_tb_INS.v:188

Figure 3-5 Inserted Simulation Result

3.3. Simulation with the Repair Function

Users can do the inserted simulation with the repair function when the repair mode is enabled. The simulation environment is built by the make language. Please refer to Makefile.RP_default file which defines commands and parameters for executing simulation.

Debugging with the waveform file, turn on the related dump parameters in the RP_default_INS_FAULT.f file, which is the same as the general inserted simulation. If there are several clock domains, each clock domain should be passed when doing the inserted simulation.

The command of inserted simulation with repair function:

\$ make RP_default FUNC=tb_INS_RP

3.4. Simulation with Fault Memory Models

START[™] can automatically generate fault memory models to verify the functional correctness of BIST circuits. These models can be found in the FAULT_MEMORY directory. Use the commands below to execute simulation with these models.

These operations will use fault_memory.f in the FAULT_MEMORY folder.

For self-simulation:

\$ make top_default FUNC=tb_f

For inserted simulation:

\$ make top_default FUNC=tb_INS_f

When executing this type of simulation, it will show a **failed prompt**. This is caused by pre-defined error bits in fault memory models. The simulation waveform can be viewed for users to understand the behavior of STARTTM designs and fault memory models. Figure 3-6 shows an example of running simulation with fault memory models. In this case, users can find the access sequence of the memories in **group 1** (1_1_8, sram_sp_640x32 memory model).

- (1) Write access with data 32'hffff_ffff to address 10'h350
- (2) Read access from address 10'h350
- (3) Read data 32'hfffd_ffff

The data of reading does not equal to the data of writing in "**A**" in Figure 3-6 and this wrong behavior has caused the simulation to fail.

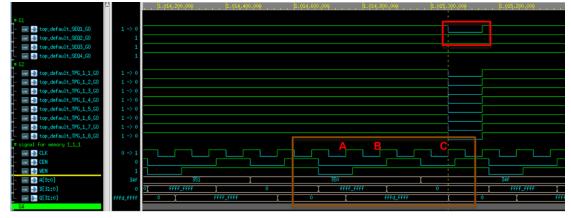


Figure 3-6Simulation Waveform of Fault Memory Models

Copyright © 2023-2024 iSTART-TEK INC. All rights reserve.

November, 2023

Users can find pre-defined error bits in fault memory models. Figure 3-7 is an example of a sram_sp_1024x32 memory model in the FAULT_MEMORY directory.

<pre>module sram_sp_1024x32_f(</pre>	
Q,	
CLK,	
CEN,	
WEN,	
Α,	
D,	
EMA,	
RETN	
);	
<pre>integer _addr;</pre>	
parameter _BITS = 32;	
<pre>parameter _sa_fault = 1'b0; // sa0</pre>	
<pre>parameter _faulty_bit = 17;</pre>	
<pre>parameter _faulty_addr = 10'h350;</pre>	

Figure 3-7 Example of Error Bit Definitions

4. Synthesis

START[™] also provides a synthesis script for BIST circuits. Users can find it in the output directory, named [design_name].tcl. Before executing synthesis, the related settings including the library path, standard cell type and path of the memory library file should be completed. If there are different clock domains, each clock domain should undergo synthesis.

START[™] provides a referenced synthesis script in the mbist folder. The command of synthesis is:

\$ make top_default FUNC=dc

Figure 4-1 shows the prompt during the execution of the synthesis command. After synthesis is completed, users can find the synthesis results including area and timing reports in the **REPORT** folder.

write_sdc \${WORK_PATH}/\${TOP}_netlist.sdc 1
#/*************** worst case timing report ***************/
redirect \${WORK_PATH}/REPORT/\${TOP}_maxtiming.rpt { report_timing .nets .delay max .max_paths 5 .transition_time .nosplit }
redirect \${WORK_PATH}/REPORT/\${TOP}_mintiming.rpt { report_timing .nets .delay min .max_paths 5 .transition_time .nosplit }
redirect \${WORK PATH}/REPORT/\${TOP} looptim.rpt { report timing -loops -max paths 5 }
#/************************************
redirect \${WORK PATH}/REPORT/\${TOP} area.rpt { report area -hier }
redirect -append \${WORK PATH}/REPORT/\${TOP} area.rpt { report reference }
redirect \${WORK PATH}/REPORT/\${TOP} power.rpt {report power}
redirect \${WORK PATH}/REPORT/\${TOP} gor.rpt {report gor}
#/********************** Write script ****************/
write script -output \${WORK PATH}/REPORT/\${TOP} scrip.rpt
_ #/************************************
redirect \${WORK PATH}/REPORT/\${T0P} constraint.rpt { report constraint -all violators -verbose -nosplit }
#/******************** check design *****************/
#redirect \${WORK PATH}/REPORT/\${10} check design.rpt { check design }
#/********************* check test **************/
#redirect \${WORK PATH}/REPORT/\${TOP} check test.rpt { check design }
#/************************************
#redirect \${WORK PATH}/REPORT}{fTOP} check timing.rpt { check timing }
exit
exit
Memory usage for main task 226 Mbytes.
Memory usage for main task zzo huytes. Memory usage for this session 226 Mbytes.
remoty usage for this session 12 conds (0.00 hours).
cro usage for this session is seconds (0.00 hours).
Thank you
Thank you make[1]: Leaving directory `/mnt/raid/home/jeremy/LAB/NDAcase/work'
make[i]. Leaving directory /mmt/ratu/nome/jeremy/Lab/mbacase/work

Figure 4-1 Synthesis Output of top_default Controller

5. Appendix: Memchecker Usage

The appendix introduces how to do memory checking with START[™] memchecker option. This can make sure if the customer's memory models can be recognized by the START[™] tool.

START[™] assists to identify memory macros in customer's design by executing the memchecker command. Here is an example to identify memories and output results in the memck folder.

\$ cd NDAcase
\$ start --memchecker -f filelist.f

Users can also identify the memories in the memory folder directly.

```
$ cd NDAcase/memory
$ start --memchecker -v filelist.v
```

Figure 5-1 shows the output message of the memchecker command.

Input file(s):
<pre>[1] /home/jeremy/LAB_e/NDAcase/memory/rom_6144_64.v</pre>
<pre>[2] /home/jeremy/LAB_e/NDAcase/memory/sram_sp_4096x64.v</pre>
<pre>[3] /home/jeremy/LAB_e/NDAcase/memory/sram_sp_640x32.v</pre>
<pre>[4] /home/jeremy/LAB_e/NDAcase/memory/rf_sp_128x22.v</pre>
[5] /home/jeremy/LAB_e/NDAcase/memory/rf_2p_72x14.v
<pre>[6] /home/jeremy/LAB_e/NDAcase/top.v</pre>
<pre>[7] /home/jeremy/LAB_e/NDAcase/memory/sram_sp_2048x64.v</pre>
<pre>[8] /home/jeremy/LAB_e/NDAcase/memory/rf_2p_64x64.v</pre>
<pre>[9] /home/jeremy/LAB_e/NDAcase/memory/sram_dp_1024x64.v</pre>
<pre>[10] /home/jeremy/LAB_e/NDAcase/memory/rf_2p_24x28.v</pre>
<pre>[11] /home/jeremy/LAB_e/NDAcase/memory/rf_2p_24x56.v</pre>
<pre>[12] /home/jeremy/LAB_e/NDAcase/memory/sram_sp_1024x32.v</pre>
Valid file(s):
<pre>[1] /home/jeremy/LAB_e/NDAcase/memory/rom_6144_64.v</pre>
<pre>[2] /home/jeremy/LAB_e/NDAcase/memory/sram_sp_4096x64.v</pre>
<pre>[3] /home/jeremy/LAB_e/NDAcase/memory/sram_sp_640x32.v</pre>
<pre>[4] /home/jeremy/LAB_e/NDAcase/memory/rf_sp_128x22.v</pre>
<pre>[5] /home/jeremy/LAB_e/NDAcase/memory/rf_2p_72x14.v</pre>
<pre>[6] /home/jeremy/LAB_e/NDAcase/memory/sram_sp_2048x64.v</pre>
<pre>[7] /home/jeremy/LAB_e/NDAcase/memory/rf_2p_64x64.v</pre>
<pre>[8] /home/jeremy/LAB_e/NDAcase/memory/sram_dp_1024x64.v</pre>
<pre>[9] /home/jeremy/LAB_e/NDAcase/memory/rf_2p_24x28.v</pre>
<pre>[10] /home/jeremy/LAB_e/NDAcase/memory/rf_2p_24x56.v</pre>
<pre>[11] /home/jeremy/LAB_e/NDAcase/memory/sram_sp_1024x32.v</pre>
Unrecognized file(s):
<pre>[1] /home/jeremy/LAB_e/NDAcase/top.v</pre>

Figure 5-1 Memcheker Information

Copyright © 2023-2024 iSTART-TEK INC. All rights reserve.

Contact Information

If there are any questions or comments, please contact iSTART-TEK at <u>support@istart-tek.com</u>. The following information might be included in the mail.

- ★ Document title
- ★ Document version
- ★ Page number
- ★ Simple and clear descriptions of the problem

Any suggestions for improvements are welcome.