

EZ-BIST User Manual

v3.4.1

Copyright ©2023-2024 iSTART-TEK INC. All rights reserved. i

November, 2023

EZ-BIST User Manual v3.4.1

Contents

1. Introduction to EZ-BIST ... 1

1.1. Features ... 1

1.2. Architecture .. 2

2. EZ-BIST Command Options and Parameters 3

2.1. Invoke EZ-BIST with the GUI Mode ... 4

2.2. Input Verilog Files .. 5

2.3. Specify the Working Path ... 7

2.4. Auto-Identify the Memory Model .. 8

2.5. The Generate the ROM Signature ... 9

2.6. Template File Generator .. 9

2.7. Input BFL File ... 10

2.8. Insert MBIST to Design .. 10

2.9. Specify Top Module .. 10

2.10. Disable Clock Tracing .. 12

2.11. Input UDM File ... 12

2.12. Generate UDM File in GUI Mode ... 13

2.13. Integrate Multiple MBIST Circuits .. 18

2.14. Generate UDM File with Library File .. 18

2.15. Generate UDM File with Configuration File 19

2.16. Parsing Type Definition .. 20

2.17. Fault Free ... 20

2.18. RCF Generator .. 21

2.19. STIL Format ... 21

3. EZ-BIST BFL Options ... 22

3.1. OPTION Function Block ... 22

3.2. BIST Function Block .. 36

4. EZ-BIST Output Files.. 60

4.1. Self-MBIST Related Files ... 60

4.2. Insert MBIST Related Files .. 61

4.3. Generate Folders ... 62

4.4. Makefile .. 63

4.5. Macro File .. 65

5. BII File ... 67

5.1. Integrator Function Block ... 67

5.2. Testbench Function Block .. 76

6. Appendixes ... 81

6.1. “Include” Case .. 81

Copyright ©2023-2024 iSTART-TEK INC. All rights reserved. ii

November, 2023

EZ-BIST User Manual v3.4.1

6.2. Parsing Mode ... 81

6.3. *.rcf File .. 81

6.4. Supported Testing Algorithm .. 82

6.5. Statistics in TSMC SP Memory .. 85

6.6. RTL Syntax Restrictions ... 90

Copyright ©2023-2024 iSTART-TEK INC. All rights reserved. iii

November, 2023

EZ-BIST User Manual v3.4.1

List of Figures

Figure 1-1 EZ-BIST Operation Flow Diagram .. 2

Figure 2-1 EZ-BIST Command Options ... 3

Figure 2-2 EZ-BIST GUI Mode .. 4

Figure 2-3 Verilog File Path ... 5

Figure 2-4 File-list File Example .. 6

Figure 2-5 Work Path ... 7

Figure 2-6 Memchecker Information .. 8

Figure 2-7 The Example of *_gold_signature.txt .. 9

Figure 2-8 EZ-BIST Template Generator ... 9

Figure 2-9 Top Module Name ... 11

Figure 2-10 User Defined Memory .. 12

Figure 2-11 Open UDM GUI .. 13

Figure 2-12 Support Batches Adding and Multiple Formats 14

Figure 2-13 Memory Parameter Settings ... 15

Figure 2-14 IO Editing through EZ-BIST .. 16

Figure 2-15 IO Adding Rapidly Using Drag & Drop .. 16

Figure 2-16 Delete IO with Right Click ... 17

Figure 2-17 User Define Memory Generation .. 17

Figure 2-18 UDM Configuration File Example ... 19

Figure 3-1 OPTION Function Block ... 22

Figure 3-2 Block Diagram of System Design with MBIST Inserted 24

Figure 3-3 Clock Sub Function Block... 27

Figure 3-4 Group Function Block ... 29

Figure 3-5 Open Memory Info File ... 31

Figure 3-6 Example of Memory Info File .. 32

Figure 3-7 Support Batches Adding and Multiple Formats 32

Figure 3-8 Memory Info Setting Information .. 33

Figure 3-9 PHYSICAL Sub Function Block .. 34

Figure 3-10 MBIST Function Block .. 36

Figure 3-11 Example of Synchronous/Asynchronous Circuit 39

Figure 3-12 Example of ATPG Circuit .. 40

Figure 3-13 Commands for Programmable Algorithm Function 40

Figure 3-14 The Example Loop Test Waveform ... 42

Figure 3-15 Example of Retention Time Option in testbech.v 46

Figure 3-16 Implementation of Bypass Circuit by Wire .. 48

Figure 3-17 Implementation of Bypass Circuit by Register 48

Figure 3-18 Example of Register Sharing .. 49

Copyright ©2023-2024 iSTART-TEK INC. All rights reserved. iv

November, 2023

EZ-BIST User Manual v3.4.1

Figure 3-19 Clock Architecture of clock_function_hookup Option 50

Figure 3-20 Clock Architecture of clock_switch_of_memory Option 50

Figure 3-21 Diagnosis Fail Memory Information .. 51

Figure 3-22 Diagnosis Fail Time Information ... 51

Figure 3-23 Default Algorithm Function Block .. 53

Figure 3-24 select_elem_testing .. 54

Figure 3-25 Select Testing Elements Sub Function Block 55

Figure 3-26 BFL TechNode .. 57

Figure 3-27 BFL Setting File .. 58

Figure 3-28 Run the BFL Setting File .. 59

Figure 4-1 Clock Gating Logic for Simulation and Synthesis 66

Figure 4-2 Clock Gating Cell with Waveform ... 66

Figure 5-1 Load BII .. 67

Figure 5-2 Options of Integrator Function Block .. 68

Figure 5-3 Hookup Sub Function Block ... 71

Figure 5-4 BII File Hookup Information Table in *.integ File 72

Figure 5-5 The Example of Port Connection .. 73

Figure 5-6 The Example of Wire Connection ... 74

Figure 5-7 Group Sub Function Block.. 75

Figure 5-8 Testbench Function Block... 77

Figure 5-9 Initial_sequence Sub Function Block .. 78

Figure 5-10 Example of BII Setting Content .. 79

Figure 5-11 Run BII Setting File .. 80

Figure 5-12 The Status Window When BII Flow is Completed 80

Copyright ©2023-2024 iSTART-TEK INC. All rights reserved. v

November, 2023

EZ-BIST User Manual v3.4.1

List of Tables

Table 1-1 EZ-BIST Features... 1

Table 1-2 EZ-BIST Input Files .. 2

Table 1-3 EZ-BIST Output Files ... 2

Table 3-1 Clock Information ... 28

Table 3-2 Commands for Programmable Algorithm.. 41

Table 3-3 BG Field Definition ... 43

Table 3-4 Example of Bit Inverse ... 43

Table 3-5 Example of Column Inverse ... 44

Table 3-6 Example of User-defined Background and Test Pattern 45

Table 3-7 Supported Units of Retention Time ... 47

Table 3-8 Fixed Four Memory Addresses ... 52

Table 3-9 Fixed Two Memory Addresses ... 52

Table 3-10 Format of March CW Element .. 56

Table 4-1 Self-MBIST Related Files ... 60

Table 4-2 Insert MBIST Related Files ... 61

Table 4-3 Generated Folder ... 62

Table 4-4 Commands of Makefile ... 63

Table 6-1 Testing Algorithms for SRAM in EZ-BIST ... 82

Table 6-2 Testing Algorithms for ROM in EZ-BIST ... 84

Table 6-3 The Default Setting of BFL file .. 85

Table 6-4 Synthetic Area of default.bfl .. 86

Table 6-5 Area Comparison Table .. 88

Copyright ©2023-2024 iSTART-TEK INC. All rights reserved. vi

November, 2023

EZ-BIST User Manual v3.4.1

Type conversion in this document

Conversion Meaning for use

Bold
Items in the user interface that you select or click and text
that you type into the user interface

<Italic> Variables in commands, code syntax, and path names

Courier File name

“” Emphasize the meaning

Color in blue The outputs from EZ-BIST tool presenting in blue color

… Omitted material in a line of code

…
 Omitted lines in code and report examples

[] Optional items in syntax descriptions to specify

() Explanations or to clarify meaning

{ } Repeatable items in syntax descriptions

| Separated the individual item in syntax descriptions

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 1

November, 2023

EZ-BIST User Manual v3.4.1

1. Introduction to EZ-BIST

EZ-BIST is an EDA tool that can generate the test circuit for MBIST (Memory Built-In

Self-Test), providing total solutions including comprehensive test algorithms, auto-

grouping mechanism, and auto-integration mechanism for MBIST circuits and the

original circuit. It is easy for users to generate optimized MBIST circuits.

1.1. Features

As shown in Table 1-1, EZ-BIST supports several features. For more details, please

refer to Application Notes.

Table 1-1 EZ-BIST Features

Feature Description

POT Power_On-Test

It is used to guarantee that memory can execute normally

after powered on, EZ-BIST supports the POT function for

users to implement the POT design.

ACT
Auto-Clock

Tracing

ACT can trace the clock root to the clock source of memory

modules and classify those memories into different clock

domains. This mechanism not only saves time of

connecting clock sources manually but also helps users to

trace the clock in an easier way during creating MBIST.

BUF Bottom-Up Flow

BUF is designed for IP/Harden implementation. Users can

insert MBIST in an individual module. Then, integrate these

individual modules in the top module.

AGC

Auto-Gating

Clock Cell

Insertion Flow

To reduce power consumption, EZ-BIST supports AGC for

users to insert gate cells and MUX in front of MBIST

automatically.

DIAG
Diagnosis

Function

In general, MBIST only shows the results of pass or fail

after MBIST executes memory testing. To analyze memory

defects, EZ-BIST supports memory diagnosis to collect

related information such as memory failure addresses,

failure patterns, etc. In addition to collecting information,

EZ-BIST diagnosis can also assign diagnosis buffer sizes

and control the diagnosis timing.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 2

November, 2023

EZ-BIST User Manual v3.4.1

1.2. Architecture

Figure 1-1 shows the operation flow of EZ-BIST.

Figure 1-1 EZ-BIST Operation Flow Diagram

EZ-BIST input files include the files listed below:

Table 1-2 EZ-BIST Input Files

Top HDL Design Top HDL design with memory models

Memory Module Verilog files of memory models

UDM Files User-defined memory files

EZ-BIST output files include the files listed below:

Table 1-3 EZ-BIST Output Files

Inserted Design Integrated MBIST circuits with the top HDL design

Synthesis Scripts Synthesis scripts for users to synthesize

MBIST Verilog Design Generated MBIST circuits design

Fault Memory Generated fault memory models

This is used to verify functional correctness of MBIST and

circuits with a pre-defined error bit memory.

Testbench Testbench of MBIST circuits simulation

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 3

November, 2023

EZ-BIST User Manual v3.4.1

2. EZ-BIST Command Options and Parameters

Users can execute EZ-BIST commands with the options, --help or -h, to know all the

options supported by EZ-BIST. Figure 2-1 shows an example of executing EZ-BIST

with option -h and this chapter will introduce these options. The upper section is the

command list. The lower section is the command descriptions.

usage: ezBist [-h] [-bii INTEGRATE_FILE] [-bfl BFL_FILE]

 [-f RUN_FILE [RUN_FILE ...]] [-v VERILOG_FILE [VERILOG_FILE ...]]

 [-W DIR] [-top MODULE] [-I] [--genmeminfo]

 [-integ FILE [FILE ...]] [-u FILE [FILE ...]] [-pm Verilog type]

 [--integrator] [--faultfree] [--ug UDM_FILE config_FILE]

 [--rcfg Addr_length Data_width output_FILE] [--tempgen]

 [--memchecker] [--memlib2udm MEMLIB_FILE]

 [--bflconfig [BFL_FILE]] [--biiconfig [BII_FILE]]

 [--pathconv work_path] [--STILloopformat work_path]

 [--latchgo_hier latchgo_data meminfo] [--udmgui [UDMGUI]]

 [--meminfogui [MEMINFO]]

optional arguments:

(……………………………………………………………………………………………………)

-h, --help show this help message and exit

-bii INTEGRATE_FILE input BII file

-bfl BFL_FILE input BFL file

-f RUN_FILE [RUN_FILE ...] input run file(s)

-v VERILOG_FILE [VERILOG_FILE ...] input 4 verilog file(s)

-W DIR specify working path

-top MODULE, -T MODULE specify top module

-I, --insert insert BIST to design

Figure 2-1 EZ-BIST Command Options

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 4

November, 2023

EZ-BIST User Manual v3.4.1

2.1. Invoke EZ-BIST with the GUI Mode

Usage: --gui

Description: This option is used to invoke EZ-BIST with the GUI mode.

Example: $ ezBist --gui

Figure 2-2 EZ-BIST GUI Mode

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 5

November, 2023

EZ-BIST User Manual v3.4.1

2.2. Input Verilog Files

Figure 2-3 Verilog File Path

Usage: -v [VERILOG_PATH]

Description: This option specifies the paths of Verilog design files. The design

files here include “system design files” and “memory models”. EZ-

BIST provides an auto-insertion function to integrate MBIST circuits

into the original system design. For this reason, users need to

provide the whole design files rather than the memory files only.

 This option supports either reading one Verilog file or reading all

files in the working directory. It also supports the file-list file format

*.f. Users can integrate all design files into a single file-list file and

read it through EZ-BIST commands. EZ-BIST will read design files

automatically. The file-list file also supports +define+, +incdir+, and

the -y options.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 6

November, 2023

EZ-BIST User Manual v3.4.1

Example 1: $ ezBist -v vlog_1

EZ-BIST will read the Verilog files in vlog_1 directory.

Example 2: $ ezBist -v vlog_1/file1.v vlog_2/file4.v

EZ-BIST will read the file1.v in vlog_1 directory and file4.v

in vlog_2 directory.

Example 3: $ ezBist -v filelist.f

EZ-BIST will read the designs in fielist.f. Figure 2-4 is an

example of the file-list file.

-v ./memory/rf_2p_24x28.v

-v ./memory/sram_sp_4096x64.v

-v ./memory/rom_6144_64.v

-v ./memory/rf_sp_128x22.v

-v ./memory/sram_dp_1024x64.v

-v ./memory/rf_2p_24x56.v

-v ./memory/sram_sp_2048x64.v

-v ./memory/sram_sp_640x32.v

-v ./memory/rf_2p_64x64.v

-v ./memory/rf_2p_72x14.v

-v ./memory/sram_sp_1024x32.v

-v ./memory/RA1RW_D2048_W128_BE_RE.v

-v ./memory/RA1RW_D2048_W140_BE_RE.v

-v ./memory/RA1RW_D1024_W128_BE_RE.v

./top.v

Figure 2-4 File-list File Example

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 7

November, 2023

EZ-BIST User Manual v3.4.1

2.3. Specify the Working Path

Usage: -W [WORK_PATH]

Description: This option is for setting the output directory of EZ-BIST execution

results.

Example 1: $ ezBist -v [VLOG_PATH]/[file_1].v -W [WORK_PATH]

EZ-BIST will read the file_1.v design file and save output results

into WORK_PATH.

Example 2: $ ezBist -v [VLOG_PATH]/[file_1].v

Without the -W option, EZ-BIST will save all generated results into

the current working directory.

Figure 2-5 Work Path

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 8

November, 2023

EZ-BIST User Manual v3.4.1

2.4. Auto-Identify the Memory Model

Usage: --memchecker

Description: This option is used to execute EZ-BIST memory checker to identify

memory models defined by users with the -v option.

Example: $ ezBist --memchecker -f filelist.f

Users can check if there is a memory model that cannot be

identified by reviewing the output messages as Figure 2-6.

Input file(s):

 [1] /home /workspace/project/memchecker/memory/rom_6144_64.v

 [2] /home//workspace/project/memchecker/memory/rf_2p_24x56.v

 [3] /home//workspace/project/memchecker/memory/sram_sp_4096x64.v

 [4] /home//workspace/project/memchecker/memory/sram_sp_640x32.v

 [5] /home//workspace/project/memchecker/memory/sram_sp_2048x64.v

 [6] /home//workspace/project/memchecker/memory/rf_2p_72x14.v

 [7] /home//workspace/project/memchecker/memory/RA1RW_D2048_W140…

 [8] /home//workspace/project/memchecker/memory/RA1RW_D2048_W128…

 [9] /home//workspace/project/memchecker/memory/sram_sp_1024x32.v

 [10] /home//workspace/project/memchecker/memory/rf_sp_128x22.v

 [11] /home//workspace/project/memchecker/top.v

 [12] /home//workspace/project/memchecker/memory/sram_dp_1024x64.v

 [13] /home//workspace/project/memchecker/memory/RA1RW_D1024_W128…

 [14] /home//workspace/project/memchecker/memory/rf_2p_24x28.v

 [15] /home//workspace/project/memchecker/memory/rf_2p_64x64.v

Valid file(s):

 [1] /home//workspace/project/memchecker/memory/rom_6144_64.v

 [2] /home//workspace/project/memchecker/memory/rf_2p_24x56.v

 [3] /home//workspace/project/memchecker/memory/sram_sp_4096x64.v

 [4] /home//workspace/project/memchecker/memory/sram_sp_640x32.v

 [5] /home//workspace/project/memchecker/memory/sram_sp_2048x64.v

 [6] /home//workspace/project/memchecker/memory/rf_2p_72x14.v

 [7] /home//workspace/project/memchecker/memory/RA1RW_D2048_W140_BE_RE.v

 [8] /home//workspace/project/memchecker/memory/RA1RW_D2048_W128_BE_RE.v

 [9] /home//workspace/project/memchecker/memory/sram_sp_1024x32.v

 [10] /home//workspace/project/memchecker/memory/rf_sp_128x22.v

 [11] /home//workspace/project/memchecker/memory/sram_dp_1024x64.v

 [12] /home//workspace/project/memchecker/memory/rf_2p_24x28.v

 [13] /home//workspace/project/memchecker/memory/rf_2p_64x64.v

Unrecognized file(s):

 [1] /home//workspace/project/memchecker/top.v

Figure 2-6 Memchecker Information

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 9

November, 2023

EZ-BIST User Manual v3.4.1

2.5. The Generate the ROM Signature

Usage: --memchecker

Description: This option is used to execute the EZ-BIST memory checker to

generate a golden ROM signature with the -v [ROM memory RTL

code file] option.

Example: $ ezBist --memchecker -v [ROM memory RTL code file]

Users can verify the signature created by the MBIST and compare

with the golden one.

$ ezBist --memchecker -v rom_6144_64.v

Note: The value of a signature will be saved in the

*_gold_signature.txt file (see Figure 2-7) and in the

meantime, a top.v file will be generated and replaced the

previous one in the memory folder.

rom_6144_64_verilog gold_signature = 7be4eb

Figure 2-7 The Example of *_gold_signature.txt

2.6. Template File Generator

Usage: --tempgen

Description: This option is used to generate a template file of EZ-BIST. These

template files include BII (MBIST Integration Information) files, BFL

(MBIST Feature List) files, UDM files, and PGF files as Figure 2-8.

Example: $ ezBist --tempgen

[ezBist][TEMPLATE] ezBist template generator:

 1. BIST Feature List (BFL)

 2. BIST Integration Information (BII)

 3. User defined memory

 4. Pattern Gen File (PGF)

 5. Quit

[ezBist][TEMPLATE] Select an option (Enter ':q' to quit):

Figure 2-8 EZ-BIST Template Generator

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 10

November, 2023

EZ-BIST User Manual v3.4.1

2.7. Input BFL File

Usage: -bfl BFL_FILE

Description: This option is used to define a BFL file for EZ-BIST.

Example: $ ezBist -bfl [filename].bfl -W [WORK_PATH]

After executing this command, EZ-BIST will base on the parameter

setting in the [filename].bfl file to generate MBIST related

files into WORK_PATH.

2.8. Insert MBIST to Design

Usage: -I, --insert

Description: This option is used to integrate the generated MBIST circuits into

the original system designs. Users need to define a top module

name with the -top option when using this option.

Example: $ ezBist -I -top [TOP_MODULE] -v [VLOG_PATH]/[file_1].v

2.9. Specify Top Module

Usage: -top [TOP_MODULE]

Description: This option is used to integrate the generated MBIST circuits into the

original system designs. Users need to define a top module name

with the -top option when using this option.

Example: $ ezBist -I -top [TOP_MODULE] -v [VLOG_PATH]/[file_1].v

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 11

November, 2023

EZ-BIST User Manual v3.4.1

Figure 2-9 Top Module Name

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 12

November, 2023

EZ-BIST User Manual v3.4.1

2.10. Disable Clock Tracing

Usage: -N, --disabletracedclk

Description: This option is used to disable the clock tracing function of EZ-BIST.

The default setting is “enabled”.

Example: $ ezBist -N -I --top [TOP_MODULE] -f file_list.f

2.11. Input UDM File

Figure 2-10 User Defined Memory

Usage: -u UDM_FILE

Description: This option is used to read the UDM files generated by users. Users

can generate UDM files when EZ-BIST cannot identify memory

models automatically. To edit a UDM file, please refer to Application

Notes for details.

Example: $ ezBist -bfl [filename].bfl -u *.udm -W [WORK_PATH]

EZ-BIST will read BFL files and UDM files in the working directory.

The output results will be saved into WORK_PATH.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 13

November, 2023

EZ-BIST User Manual v3.4.1

2.12. Generate UDM File in GUI Mode

User can choose Open UDM GUI directly from BFL GUI.

Figure 2-11 Open UDM GUI

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 14

November, 2023

EZ-BIST User Manual v3.4.1

Figure 2-12 Support Batches Adding and Multiple Formats

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 15

November, 2023

EZ-BIST User Manual v3.4.1

Set the parameters below through GUI:

⚫ Memory basic parameter

⚫ Port read/write behavior

⚫ Test Port

⚫ IO Port, Don’t Touch Port, Repair Port

Figure 2-13 Memory Parameter Settings

(For the detailed information, please refer to Chapter 10 in Application Notes)

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 16

November, 2023

EZ-BIST User Manual v3.4.1

Figure 2-14 IO Editing through EZ-BIST

Figure 2-15 IO Adding Rapidly Using Drag & Drop

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 17

November, 2023

EZ-BIST User Manual v3.4.1

Figure 2-16 Delete IO with Right Click

Figure 2-17 User Define Memory Generation

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 18

November, 2023

EZ-BIST User Manual v3.4.1

2.13. Integrate Multiple MBIST Circuits

Usage: --integrator

Description: This option is used to integrate multiple MBIST circuits.

Example: $ ezBist --integrator -bii [filename].bii -W [WORK_PATH]

EZ-BIST will refer to BII files to integrate multiple MBIST circuits

and save output results into WORK_PATH.

2.14. Generate UDM File with Library File

Usage: --memlib2udm -lv [filename].memlib or –memlib2udm -f

[filename].memlib

Description: This option is used to generate UDM files from memory library files.

If there is only one file, use --memlib2udm -lv [filename].memlib. If

there is a file list that contains multiple files, use --memlib2udm -f

[filename].memlib.

Example: $ ezBist --memlib2udm -lv sram_512x8.memlib

EZ-BIST will generate UDM files for memory sram_512x8.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 19

November, 2023

EZ-BIST User Manual v3.4.1

2.15. Generate UDM File with Configuration File

Usage: --ug UDM_File config_file

Description: This option is used to generate UDM files based on the settings in

the configuration file. The configuration file is used to set different

widths for address port and data port. Figure 2-18 shows an

example of the configuration file. The first column defines the

memory model name, the second column defines the address

count, the third column defines data width, and the fourth column

defines mux.

Example: $ ezBist --ug sram_512x8.udm config.file

EZ-BIST will generate UDM files with the same type as the

sram_512x8 memory model but with different data width or address

width.

#module_name address_count data_width mux

U40LP_VHD_SRF_16X8M4B1 16 8 4

U40LP_VHD_SRF_116X38M4B1 116 38 4

U40LP_VHD_SRF_216X28M4B1 216 28 4

U40LP_VHD_SRF_316X18M4B1 316 18 4

Figure 2-18 UDM Configuration File Example

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 20

November, 2023

EZ-BIST User Manual v3.4.1

2.16. Parsing Type Definition

Usage: -pm, --parsingmode

Description: This option is used to specify the input design type. The supported

types are RTL_only and Netlist_only.

Example: $ ezBist -pm Netlist_only -v example.v

EZ-BIST will import example.v with the nestlist format.

2.17. Fault Free

Usage: --faultfree

Description: This option is used to decide whether the generated system

designs include fault memory modes or not. When this option is

set, the system designs with and without fault memories will be

generated. When this option is not set, only the system designs

with fault memories will be generated. The file name will be

[design]_INS.v.

Example 1: $ ezBist -bfl ezBist _template.bfl -I -W ./work

EZ-BIST will generate an integrated system design with fault

memory models.

Example 2: $ ezBist -bfl ezBist _template.bfl -I --faultfree -W ./work

EZ-BIST will generate integrated system designs with and without

fault memory models, respectively.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 21

November, 2023

EZ-BIST User Manual v3.4.1

2.18. RCF Generator

Usage: --rcfg address_length data width output_file

Description: This option is used to generate an example RCF file for ROM

memory model. The content of output RCF file is random.

Example: $ ezBist --rcfg 32 8 example.rcf

EZ-BIST will generate an example RCF file with 32x8 matrix

format.

2.19. STIL Format

Usage: --STILloopformat

Description: Change STIL file into the loop format.

Example: $ ezBist --STILloopformat

EZ-BIST will generate STIL file into loop format.

If there are many repetitive testing commands, using the option will

simplify the testing commands as loop instructions.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 22

November, 2023

EZ-BIST User Manual v3.4.1

3. EZ-BIST BFL Options

Users can execute EZ-BIST to generate the MBIST circuits with the BFL flow. This

chapter will introduce the setting options in the BFL file.

The definitions of function blocks in BFL file are defined as follows:

define{function}
 …
end_define{function}

Users can find different options in each function block as below.

3.1. OPTION Function Block

 Figure 3-1 shows the parameters in the OPTION function block.

Figure 3-1 OPTION Function Block

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 23

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

verilog_path User defined

Set the Verilog file paths for EZ-BIST. The format can be set either by file1.v | file2.v |
fileN.v or file-list file (*.f).

Note: Each file is separated by a vertical bar “|”.

Example:
set verilog_path = ./top.f

user_define_memory User defined

Set UDM file paths for EZ-BIST. The format can be memory1.udm | memory2.udm | … |
memoryN.udm.

Note: Each file is separated by a vertical bar “|”.
For more details, please refer to Application Notes.

Example:
set user_define_memory = BRAINS.udm

top_module_name User defined

Set the top module name of the system design which includes memory modules.

Example:

set top_module_name = top

top_hierarchy User defined

Specify the location (instance name) of the controller for MBIST circuits in the design
architecture.

Example:

set top_hierarchy = top

clock_trace No, Yes

This option is for users to disable/enable the clock source tracing function. The default
setting is “no”.

No: Disable the clock source tracing function

Yes: Enable the clock source tracing function

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 24

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

auto_group No, Yes

This option is for users to automatically group memory models based on the settings in
the GROUP function block. The default setting is “no”.

No: Disable the clock auto-grouping function

Yes: Enable the clock auto-grouping function

insertion No, Yes

This option is used to integrate the generated MBIST circuits and the original system
designs. Figure 3-2 shows the block diagram of the inserted system design.

No: Disable the insertion function

Yes: Enable the insertion function

Figure 3-2 Block Diagram of System Design with MBIST Inserted

integrator_mode No, Yes

This option is for users to add the dedicated testing port in the top module of MBIST.
Because these testing ports adhere to standard protocols such as IEEE 1149.1, users can
use the shared pin design to reduce the pin count. The default setting is “no”.

No: EZ-BIST will generate some specific hookup pins for the BII flow. Users can use

them to control MBIST or get data from MBIST.

Yes: EZ-BIST will reserve signals internally in advance for testing only in the BFL
flow.

Note: The option must be set to “yes” when clock tracing turns on.

work_path User defined

Specify the path for saving the generated results in the BFL flow.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 25

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

fault_free No, Yes

When this option is set to “no”, EZ-BIST will generate an integrated system design with
fault memory models. On the contrary, when this option is set to “yes”, EZ-BIST will
generate two integrated system designs with and without fault memory. However, the
simulation will run on without fault memory. MBIST circuits are integrated into the original
system design.

parsing_mode RTL_only, Netlist_only

This option defines the file format of the imported design, supporting RTL_only and
Netlist_only.

Note: If the Netlist file are not uniquified, the parsing mode must be set to “RLT_only.”

ecc_prefix User defined

Specify the prefix of ECC (Error Correction Code) related files.

For example, when this option is set to “ECC”, the output repair-related files will be named
like ECC_[design]_INS.v and ECC_[filename]_tb.v etc.

memory_library User defined

Define memory library (shown in Example 1) to make START to load the information of
memory models. If multiple files need to be set, they can be separated by a vertical bar
('|'). Alternatively, users can also fill in the memory file list as shown in Example 2.

Example 1: set memory_library = /home/workspace/ram1024x32.lvlib
Example 2: set memory_library = ./mem_lib.f

block_path User defined

While the design is implemented with the bottom-up flow to insert MBIST into the sub
module, it will generate a *.blockinfo file in the sub module.

Example:
set block_path = ./block1/START_block1.blockinfo | ./block2/START_block2.blockinfo

force_system_verilog No, Yes

The parsing format will be changed to System Verilog when users set the option to “yes”.
The default setting is “no”.

No: Initial parsing format is Verilog.

Yes: Changed parsing format to System Verilog.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 26

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

disable_auto_identify No, Yes

The default setting is “no”.

When the user confirms that the "set memory_library" for the memories in the design has
been input in the tool, enabling "disable_auto_identify" will deactivate the tool's “auto
identify memory” feature to reduce the overall runtime of the tool.

skip_check_translate_off No, Yes

Under the default condition (skip_check_translate_off = no), START will skip analyzing the
content between "//synopsys translate_off" and "// synopsys translate_on":

//synopsys translate_off
...(content)
//synopsys translate_on

If users want the tool to recognize and analyze the content, please set
skip_check_translate_off to yes.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 27

November, 2023

EZ-BIST User Manual v3.4.1

3.1.1. CLOCK Sub Function Block

Users can define the information of clock domain or provide an SDC file for EZ-BIST

to do clock tracing.

Figure 3-3 Clock Sub Function Block

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 28

November, 2023

EZ-BIST User Manual v3.4.1

Table 3-1 Clock Information

Argument Option

Description

sdc_file User defined

Specify the path of an SDC file.

define{clock_name} User defined

Set the clock domain name.

clock_cycle User defined

Set the operating period of clock domain defined in “clock_name”.

clock_source_list User defined

Set the source pin or port of clock domain defined in “clock_name”.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 29

November, 2023

EZ-BIST User Manual v3.4.1

3.1.2. GROUP Sub Function Block

EZ-BIST assigns memory grouping according to the rule of clock domains, types of

memory models, the criteria of grouping specifications, and power consumption.

Users can also do memory grouping manually based on their own project

requirements by editing the memory information file *.meminfo. Memory models in

the same group can be tested in parallel to reduce the testing time.

Each memory will have the dedicated SEQ_ID (Sequencer ID) and GRP_ID (Group

ID). Memories have the same SEQ_ID and GRP_ID are in the same group and can

be tested at the same time.

The SEQ_ID is classified by types, specifications, and the clock domains of memory

models. This ID means which sequencer the memory models belong to. The GRP_ID

is classified by power consumption and number limitations of a single group.

Figure 3-4 Group Function Block

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 30

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

sequencer_limit User defined

This option defines the maximum amount of memory instances in a sequencer.

Default Value: 60

group_limit User defined

This option is used to define the maximum amount of memory instances in a group. This
number should be less than the value of sequencer_limit.

Default Value: 30

memory_list User defined

Specify the paths of memory info file (*.meminfo). Figure 3-8 is an example of memory

info file.

For more details, please refer to Application Notes.

lib_path User defined

This option is for users to set the path of memory libraries. EZ-BIST will load power
information of memory models from *.lib files and do memory grouping automatically

based on the power criteria through the power_limit option.

time_hierarchy 0 (time) <= value <= 1 (hierarchy)

This option is for users to adjust the weight between the testing time and design hierarchy.
The default value is 0.5.

For example:

set time_hierarchy = 0 EZ-BIST will assign memory grouping based on the optimized
testing time. The testing time will be the highest priority.

set time_hierarchy = 1 EZ-BIST will assign memory grouping by hierarchy
relationships.
In this case, the logical hierarchy will be the highest priority.

power_limit User defined

Set the maximum limitation of power consumption in one group.

For example:
set power_limit = 0.005

Note: The unit is mW and can be decimal.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 31

November, 2023

EZ-BIST User Manual v3.4.1

As shown in Figure 3-5, users can open a memory info file by clicking the “File” menu

and selecting “Open”.

Figure 3-5 Open Memory Info File

Argument Option

Description

hierarchy_limit User defined

Set the maximum hierarchy number when doing auto-grouping. If the hierarchy number
between memory models is larger than this number, EZ-BIST will not group these memory
models into the same group.

Default Value: 0 (no limitation of hierarchy number)

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 32

November, 2023

EZ-BIST User Manual v3.4.1

Figure 3-6 is an example of the memory info file. For the detailed information, please

refer to Chapter 7 in Application Notes.

Figure 3-6 Example of Memory Info File

As shown in Figure 3-7, users can right click “GROUP” and select “add mem” to add

memories by batches according to the information described below.

Figure 3-7 Support Batches Adding and Multiple Formats

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 33

November, 2023

EZ-BIST User Manual v3.4.1

A memory info file includes the following items. For the detailed information, please

refer to Chapter 7 in Application Notes.

⚫ Clock domain: It shows “memory clock domain name” and “testing clock cycle”.

⚫ Memory module: It shows the “memory module name” and “memory hierarchy”.

⚫ Bypass: Set the values of the bypass function.

⚫ Diagnosis: Set the values of the diagnosis function.

⚫ Q_pipeline: Set the value of the Q_pipeline option.

⚫ Group Architecture: This option shows the grouping architecture information

including the controller, sequencer, and group.

⚫ Design information: This option shows the number of memory instances,

memory types, and testing algorithms.

Figure 3-8 Memory Info Setting Information

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 34

November, 2023

EZ-BIST User Manual v3.4.1

3.1.3. PHYSICAL Sub Function Block

Figure 3-9 PHYSICAL Sub Function Block

(For the detailed information, please refer to the table in the next page.)

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 35

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

enable_physical No, Yes

If this option is set to “yes”, EZ-BIST will auto-group based on the DEF (Design Physical
Information) file.

physical_location_file User defined

Set the paths of the DEF file.

controller_scope User defined

After editing a SCOPE file, set the path of the SCOPE file. The scope information should
be included with a controller name and position coordinate as follows.

Controller Name Position Coordinate (x1 y1) (x2 y2)

For example, top_default (10000 10000) (300000 400000)

physical_logical 0 <= value <= 1

This option is to adjust the weight between physical coordinates and values defined in the
time_hierarchy option.

For example:

set physical_logical = 0 EZ-BIST will calculate the number of intermediates based
on an internal algorithm. Memory models which are located
near this intermediate number will be merged into the same
group.

set physical_logical = 1 EZ-BIST will execute memory grouping based on the value
of the time_hierarchy option.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 36

November, 2023

EZ-BIST User Manual v3.4.1

3.2. BIST Function Block

Figure 3-10 MBIST Function Block

Argument Option

Description

STIL_test_bench No, Yes

Generate a test pattern with the STIL format (IEEE 1450-Standard Test Interface
Language) for the tester machine when this option set to “yes”. Since the result in the
default STIL format might be a lot of repeated codes, users can change it into the loop
format by using command lines, -- STILloopformat.

No: Not generate the test pattern with the STIL format
Yes: Generate the test pattern with the STIL format

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 37

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

WGL_test_bench No, Yes

Generate a test pattern with the WGL format (Waveform Generation Language) when
this option is set to “yes”.

No: Not generate the test pattern with the WGL format
Yes: Generate the test pattern with the WGL format

bist_interface basic, basicIO, ieee1500, ieee1149.1

Select the MBIST interface.

Note: For more details of these interfaces, please refer to IO Pin Definition.
Note: When users set bist_interface to “ieee1149.1”, then IEEE 1149.7 will be the output
interface.
Note: When users set bist_interface to “ieee1500”, then IEEE 1149.1 will be the output
interface.

add_address_y No, Yes

This option defines MBIST algorithms and supports the Y direction. The generated
testbench supports the X and Y addressing modes (X stands for the row of the memory,
and Y stands for the column of the memory.)

No: The MBIST pattern testing only supports the X direction.

Yes: The MBIST pattern testing supports both X and Y directions.

Note: This option does not support memories with a column width of “0”.
Note: To define the X or Y directions, users must modify the X_Y setting in the testbench
file.

X_Y = 00 Write MBIST pattern in the X direction only.

X_Y = 01 Write MBIST pattern the X direction first, and then Y direction.

X_Y = 10 Write MBIST pattern in the Y direction first, and then X direction.

X_Y = 11 Write MBIST pattern in the Y direction only.

clock_source_switch No, Yes

This option is used to select the testing frequency while the clock_within_pll option and
clock_switch_of_memory option is turned on. The MBIST circuit will have a dedicated
test input signal named TRANS. Users can use this input signal to choose the testing
frequency (from SCK or MCK).
Note: The option must be set to “no” when clock tracing is turned on.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 38

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

clock_within_pll No, Yes

If this option is set to “yes”, the MBIST circuit will have another clock input source, SCK.
This signal is used to connect with an ATE (Automatic Test Equipment) machine.

Note: The option must be set to “no” when clock tracing is turned on.

diagnosis_support No, Yes

This option is used to enable the diagnosis mode, which can provide users with the failure
time and failed memory information.

No: Disable the Diagnosis mode

Yes: Enable the Diagnosis mode

diagnosis_data_sharing No, Yes

Users can integrate diagnosis circuits into the sequencer to do diagnosis storage sharing
to reduce the area of MBIST circuits when this option set to “yes”.

diagnosis_faulty_items algorithm, operation, element, seq_id,
grp_id, address, ram_data, rom_data

This option is used to select the output items of the diagnosis result based on the chip
failure analysis requirement.

Example:

set diagnosis_faulty_items = algorithm, operation, element, seq_id, grp_id, address,
ram_data, rom_data

rom_result_shiftin No, Yes

This option is used to do ROM memory testing and import the signatures for internal
verification. The scenario is used when the contents of the ROM memory is not confirmed
at the initial development stage.

For example, when users set rom_result_shiftin to “yes” and the POT function is
enabled, the testing results of ROM memory will be transferred to the internal circuit via
commands.

rom_result_shiftout No, Yes

This option is used to do ROM memory testing and export the signatures for external
verification. The scenario is used when the contents of ROM memory is not confirmed at
the initial development stage.

For example, when user set rom_result_shiftout to “yes” and the testing results of the
ROM memory will be transferred to the output interfaces via commands.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 39

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

Q_pipeline No, Yes

This option is used to add an extra pipeline register to MBIST logics.

No: No extra register will be added to the data output of a memory model.

Yes: An extra register will be added to the data output of a memory model to enhance the
operating timing of MBIST logics.

asynchronous_reset No, Yes

The option is used to specify asynchronous or synchronous reset of MBIST. The circuit
can be differentiated into two types, “synchronous reset” and “asynchronous reset”.
“Synchronous reset” indicates all DFFs are triggered to reset and then reset at the same
time. “Asynchronous reset” indicates the reset of the circuit is based on the sequential
order. In other word, this is not synchronous reset.

No: Synchronous reset will be applied with two DFFs. In addition, hookup the
RSTN port (the MBIST reset signals) and the ATPGen port.

Yes: It indicates the asynchronous reset while one reset signal asserts.
Additionally, hookup the RSTN port in the BII flow.

Figure 3-11 shows an example of synchronous/asynchronous circuits. When the ATPGen
port is under the “scan mode”, the synchronous circuit will be bypassed and be regarded
as the asynchronous circuit to select signals.

Figure 3-11 Example of Synchronous/Asynchronous Circuit

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 40

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

atpg_reset No, Yes

This option is for users to reset the “Automatic Test Pattern Generation”. When the option
is set to “yes”, EZ-BIST tool will string all the reset signals under MBIST into a series of
ATPG_rstn.

Note: In the BII flow, hookup ATPG_rstn and ATPGen ports at the same time.
Note: When users set atpg_reset to “yes”, the ATPG signal will be inserted into the
multiplexer (MUX) for the selection of ATPG_rstn or async_rstn_in signal as shown in
Figure 3-12.

Figure 3-12 Example of ATPG Circuit

select_elem_testing No, Yes

This option is for users to do testing with user-defined test algorithms rather than EZ-BIST
built-in algorithms by controlling input interfaces. When this function is turned on, users
can select the algorithm elements in the SEQ, and the elements can be tested in the
testbench.
A programmable algorithm is presented as a PROG entry. Figure 3-13 shows the testing
commands while this option is turned on. Table 3-2 is the definition of these entries.

Note: User-defined testing algorithms cannot support ROM memory testing and the
diagnosis function.

PROG SEQ_ID GRP_ID MEB_ID BG ALG_CMD

Figure 3-13 Commands for Programmable Algorithm Function

SDI_Command

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 41

November, 2023

EZ-BIST User Manual v3.4.1

Table 3-2 Commands for Programmable Algorithm

Command Description

PROG
PROG = 0, executing the EZ-BIST built-in algorithm

PROG = 1, executing the user-defined algorithm

SEQ_ID Sequencer ID of the memory

GRP_ID Group ID of the memory

MEB_ID Memory ID of the memory

BG

“SOLID” is the default background style.

Only when “5A” is chosen, users can select four different modes to test.
For more details, please refer to Table 3-3.

ALG_CMD

This ALG_CMD entry is based on March algorithm, users also can
define it. While PROG = 1, MBIST circuits will execute user-defined
algorithms. The width of the ALG_CMD entry is based on the March
element definition.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 42

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

algorithm_selection No, Outside, Scan

This option is for users to choose a single test algorithm or multiple test algorithms to test
sequentially.

No: Users can select algorithms which will be tested with MBIST circuits
sequentially.

Outside: Users can select the test algorithm with the input port ALG and this input port
will be added when the basic interface is defined.

Scan: Users can launch a test with IEEE 1149.1 or IEEE 1500.

algorithm_loop_test No, Yes

This option is for users to improve the loop mode testing efficiency. Some tests require a
loop mode, but using multiple testing commands can cause delays between the
commands.

No: Not support continuous memory testing

Yes: Support continuous memory testing

Users can send commands to control the BURN_IN signal to define the period of testing
as Figure 3-14 when this option set to “yes”.

Figure 3-14 The Example Loop Test Waveform

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 43

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

background_style SOLID, 5A

The type of background_style can be set to “SOLID” and “5A” (Check Board), the

contents are defined in the bg_table file.

There is an entry named BG (Background) in the SDI_Command. When

background_style is set to 5A, the BG settings are shown as Table 3-3.

Note: If users adopt “March Mdsn1” as an algorithm, background_style cannot be set to

“5A”.

Table 3-3 BG Field Definition

BG [1:0] Definition

00 SOLID + 5A

01 SOLID

10 5A

11 SOLID + 5A

background_bit_inverse No, Yes

Bit inverse means that the BG testing data will be inversed by the increasing order or
decreasing order of the memory address.
For example, the BG testing data of a 64x8 memory with SOLID BG is shown as Table
3-4.

Table 3-4 Example of Bit Inverse

Memory Address SOLID BG Test Data Description

0000_0000 0000_0000 testing data non-inversed

0000_0001 1111_1111 testing data inversed

0000_0010 0000_0000 testing data non-inversed

0000_0011 1111_1111 testing data inversed

… … …

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 44

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

background_col_inverse No, Yes

Column inverse means that the BG testing data will be inversed by the changes of the row
memory address. If this changing time is larger than the CIC (Column Inverse Counts)
number, the BG testing data will be inversed. The CIC number is defined by the memory
Mux value.

For example, a 64x8 memory with Mux = 4 and the BG type = SOLID. The BG testing data
is shown as Table 3-5.

Table 3-5 Example of Column Inverse

Memory Address SOLID BG Test Data Description

0000_0000 0000_0000 testing data non-inversed

0000_0001 0000_0000

0000_0010 0000_0000

0000_0011 0000_0000

0000_0100 1111_1111 testing data inversed

0000_0101 1111_1111

0000_0110 1111_1111

0000_0111 1111_1111

0000_1000 0000_0000 testing data non-inversed

0000_1001 0000_0000

0000_1010 0000_0000

0000_1011 0000_0000

… … …

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 45

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

user_define_bg User defined

Users can specify the background test pattern via the setting of user_define_bg.

For example, if the width of the data is 4 bits:

Example 1: When users assign user_define_bg to “3” and background_style to

“SOLID”, then the testing pattern will be 0x3.

Example 2: When users assign user_define_bg to “3” and background_style to
“5A”, then the testing pattern will be 0x3,0xC,0x5,0xA.

Table 3-6 lists the example of user-defined background and the corresponding test
patterns.

Table 3-6 Example of User-defined Background and Test Pattern

Background Style
User-defined
Background

Test Pattern

SOLID 3 3

5A
3 3, C, 5, A

3, 7 3, C, 7, 8

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 46

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

retention Handshake, Time

This option is for users to set the mode of retention.

Handshake: The retention time can be set in retention_time option in BFL file or in
testbech.v file as shown in Figure 3-15.

Time: The retention time is fixed after being set in the retention_time option in
the BFL file.

`timescale 1ns / 1ps

module stimulus;

parameter top_default_bcyc = 100.0;

parameter RP_default_bcyc = 100.0;

parameter tcyc = 100.0;

parameter rcyc = 100.0;

parameter cyc = tcyc;

parameter CORE_ID = {3{1'b1}};

parameter RP_default_RET_time = 5.0;

parameter top_default_RET_time = 5.0;

parameter TAP_IR_width = 1*3;

parameter test_result_width = 10;

parameter test_command_width = 17;

parameter max_config_width = 17;

parameter WIR_width = 6;

parameter COMMAND_DR_ID = {2'b1, 2'b1, 2'b1};

parameter TEST_RESULT_DR_ID = {2'd2, 2'd2, 2'd2};

parameter max_config_width = 367;

parameter DIAG_RESULT_DR_ID = {2'd3, 2'd3, 2'd3};

parameter top_default_ALG_width = 2;

parameter top_default_SEQ_ID_width = 2;

parameter top_default_GRP_ID_width = 1;

Figure 3-15 Example of Retention Time Option in testbech.v

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 47

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

retention_time User defined

This option is used to define the retention time. The supported unit of retention time are
listed in Table 3-7.

Table 3-7 Supported Units of Retention Time

Symbol Unit

T 1012

G 109

M 106

K or k 103

m 10-3

u 10-6

n 10-9

p 10-12

Some memory testing algorithms allow users to do retention testing.
For example, March-RET algorithm is <(wb) (SLP) <(rb) >(wa) (SLP) >(ra). The (SLP)
element indicates the sleeping time is 1ms. If users want to extend the sleeping time more
than 1ms, they can specify the retention time through retention_time.

define{BIST}
 …

set retention_time = 1m
 …
end_define{BIST}

Note: The syntax of the retention time has different formats.

Take 1ms as an example,
The timing setting format in Verilog is retention_time = 1000000 (n).
The timing setting format in System Verilog is retention_time = 1000000 (n)
or retention_time = 1m.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 48

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

bypass_support No, Wire, Reg

Define whether the bypass circuit is implemented by wire or register.

No: Disable the bypass mode

Wire: Implement the bypass circuit by wire as Figure 3-16

Reg: Implement the bypass circuit by register as Figure 3-17

When entering the bypass mode, all input signals of the memory will be combined with
normal access output. This option can increase logical testability and fault coverage.

Figure 3-16 Implementation of Bypass Circuit by Wire

Figure 3-17 Implementation of Bypass Circuit by Register

Note: If the bypass_support option is enabled, the ATPG clock (Scan) will switch to
MBIST clock (MCK, memory clock) in the multi-source scenario.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 49

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

bypass_memory_disable No, Yes

This option is available only when bypass_support is enabled. The memory CS (chip
select) will be disabled. For example, when CS is active high, the parameter of CS will be
“0”. When CS is active low, the parameter of CS will be “1”. All the memory clocks will be
tied together with “0”.

No: The memory CS will be enabled.

Yes: The memory CS will be disabled.

bypass_reg_sharing 1 <= value <= 1024

Users can set this option to define the register sharing number of bypass registers when
bypass_suppor is set to “reg”. The range is between “1 ~1024”. EZ-BIST will base on
this option to implement register sharing to reduce the area of bypass registers.

For example, when users assign bypass_reg_sharing to “4” and data output Q to “32”
bits, the number of bypass registers will be “8” as Figure 3-18.

Figure 3-18 Example of Register Sharing

bypass_clock No, Yes

If users decide to implement the bypass circuit by “reg” method, they can turn on this
option to add a dedicated input port BCK for the bypass register and users can define the
frequency of BCK based on their project requirements.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 50

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

clock_function_hookup No, Yes

This option is for users to hookup MCK with a memory functional clock. When this option
is set to “yes”, MCK will be driven by the memory functional clock directly.

Note: The option is available only when clock tracing is turned on. Figure 3-19 shows the
clock architecture of this option.

Figure 3-19 Clock Architecture of clock_function_hookup Option

clock_switch_of_memory No, Yes

When this option is set to “yes”, the clock signal of the memory model will be changed to
MCK by clock multiplexer in the test mode. The clock signal of the memory model is
running at the same frequency according to users’ requirements. Figure 3-20 shows the
clock architecture of this option. The MCK also can be driven by the internal testing clock.
Users can hookup it with internal clock signal in BII mode.

Figure 3-20 Clock Architecture of clock_switch_of_memory Option

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 51

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

diagnosis_memory_info No, Yes

EZ-BIST will generate MBIST circuits with N-bits width LATCH_GO output signals when
this option is turned on. N means the number of memory models and each bit of a
LATCH_GO signal indicates one memory model. Figure 3-21 shows the waveforms of
LATCH_GO signals. When the signal turns from high to low, it indicates that memory has
failed.

Figure 3-21 Diagnosis Fail Memory Information

diagnosis_time_info No, Yes

EZ-BIST will generate MBIST circuits with the MBIST_GO output signal when this option
is turned on. If the memory fails, this signal will change from high to low and return to high
in the next clock cycle as shown in Figure 3-22.

Figure 3-22 Diagnosis Fail Time Information

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 52

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

parallel_on No, Yes

Specify the memory to support parallel testing. When this option is set to “yes” and assign
testbench parameter PRL_ON to “1”, all memories under a controller will launch the testing
simultaneously.

reduce_address_simulation No, Yes

EZ-BIST executes testing with fixed four memory addresses as Table 3-8. This option
speeds up simulation by reducing memory testing addresses. If the column width is zero,
the testing address will be fixed to two memory addresses as Table 3-9.

Table 3-8 Fixed Four Memory Addresses

Memory Address Row Memory Address Column

…000000 000000…

…000000 111111…

…111111 000000…

…111111 111111…

Table 3-9 Fixed Two Memory Addresses

Memory Address Row

…000000

…111111

pot No, basic, hw_rom, rom

When the system requires the Power_On testing, the following options are available. For
more details, please refer to Chapter 9 in Application Notes.

No: Disable the POT function.

Basic: It indicates supporting some generic signals to enable or disable
MBIST and the test results. This function only supports the RAM test.

hw_rom: It indicates that the POT testing commands will be designed to
hardwired circuits. This function supports the ROM test.

Rom: It indicates that the POT testing commands will be stored in the ROM.
This function supports the ROM test.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 53

November, 2023

EZ-BIST User Manual v3.4.1

3.2.1. Default Algorithm Sub Function Block

EZ-BIST provides various testing algorithms for users to choose according to different

testing requirements. Figure 3-23 shows the default setting of single-port memories

is the March C+ algorithm. If users want to add more testing algorithms into MBIST

circuits, they just need to add algorithms into this function block.

The ROM setting is used to set the algorithm for ROM, and there are two options:

ROM test and ROM Test 3n.

Section 6.4 shows the testing algorithms provided by EZ-BIST.

Figure 3-23 Default Algorithm Function Block

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 54

November, 2023

EZ-BIST User Manual v3.4.1

3.2.2. Programmable Algorithm Sub Function Block

As shown in Figure 3-24, users can set the programmable algorithm in the GUI mode.

Figure 3-24 select_elem_testing

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 55

November, 2023

EZ-BIST User Manual v3.4.1

Figure 3-25 shows the select testing elements sub function block, describing the

testing elements created by users.

Figure 3-25 Select Testing Elements Sub Function Block

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 56

November, 2023

EZ-BIST User Manual v3.4.1

While users chose the programmable algorithm function, the ALG_CMD entry will be

added for programming usage. Users can define elements of their own testing

algorithm.

For example, the March CW algorithm provided by EZ-BIST. The contents of this

algorithm is >(wa) >(ra, wb) >(rb, wa, ra) <(ra, wb, rb) <(rb, wa) <(ra), the number of

March elements is 6 and the supported elements are r, w, rw and rwr. In this case, the

width of the ALG_CMD entry is 7 × 5 = 35 (5 indicates element width / EOT, End of

Test should be 0) and the format definition of March element can be Direction, Parity,

and Operation as Table 3-10. Users also can find the definition in the

march_command.alias file.

ALG_CMD = {ALG_CMD6, ALG_CMD5, … , ALG_CMD1, ALG_CMD0}

Table 3-10 Format of March CW Element

Type Field Width Value Description

Direction
>

1
0 Address increase

< 1 Address decrease

Data

Background

a
1

0 Data background

b 1 Inverse data background

Operation

r

3

001 Read

rw 010 Read, Write

rwr 011 Read, Write, Read

w 100 Write

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 57

November, 2023

EZ-BIST User Manual v3.4.1

3.2.3. BFL TechNode

To avoid the possibility of dynamic defects in electronic devices which are

manufactured from the advanced processes below 50nm, more accurate algorithms

are needed for memory testing. EZ-BIST provides another way to select the

algorithms. According to the needs of different processes and applications, EZ-BIST

TechNode will check the recommended algorithms for users as Figure 3-26.

Figure 3-26 BFL TechNode

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 58

November, 2023

EZ-BIST User Manual v3.4.1

3.2.4. BFL Setting File

Users can check the settings of the BFL file in the BFL content page.

Figure 3-27 BFL Setting File

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 59

November, 2023

EZ-BIST User Manual v3.4.1

As shown in Figure 3-28, users can click “Run” from the “File” drop-down menu to

complete the MBIST execution.

Figure 3-28 Run the BFL Setting File

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 60

November, 2023

EZ-BIST User Manual v3.4.1

4. EZ-BIST Output Files

This chapter introduce EZ-BIST’s output files and their usages. These output files are

divided into Self-MBIST and Inserted-MBIST. Users can use these generated files to

verify the MBIST circuit, and also verify the MBIST circuit integrated with customers’

own logic design.

4.1. Self-MBIST Related Files

The generated self-MBIST related files include the self MBIST circuits (.v), test bench

(.v), file-list file (.f), synthesis script (.tcl) and brief introduction file (.html). When

users run simulations with these output files, it only simulates between MBIST circuits

and memories.

Table 4-1 Self-MBIST Related Files

 EZ-BIST output Description

Project file (.bid) [filename]_spec.bid
This is an EZ-BIST project file and includes

all settings of EZ-BIST.

Self MBIST circuits

(.v)

[filename]_top.v

[filename].v

[filename]_top.v includes memory

models, fault memory models and MBIST

circuits.

It is integrated with MBIST circuits and

memory models of original system design.

[filename].v is HDL file of MBIST

circuits.

Test bench (.v) [filename]_tb.v
This is a test bench for testing

[filename]_top.v.

File list (.f) [filename].f

File-list file records [filename]_top.v,

[filename].v and memory models. This

file is used for simulation.

Synthesis script

(.tcl)
[filename].tcl

This is a script file for synthesis of MBIST

circuits.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 61

November, 2023

EZ-BIST User Manual v3.4.1

4.2. Insert MBIST Related Files

EZ-BIST can insert MBIST circuits into customers' design. Users can verify the

inserted-MBIST with their own system circuit. The following table shows the related

files of the insert MBIST circuits.

Table 4-2 Insert MBIST Related Files

 EZ-BIST output Description

Inserted

MBIST

circuits (.v)

[design]_INS.v

[design]_INS_f.v

The file [design]_INS.v integrate MBIST

circuits with user’s system designs. The [design]

is the name of user’s system designs. This file

does not include fault memory models.

Different from [design]_INS.v,

[design]_INS_f.v is integrated with fault

memory models.

Test bench

(.v)

[filename]_tb_INS.v This is a test bench for testing

[design]_INS.v.

File list (.f) [filename]_INS.f

[filename]_INS_FAULT.f

File-list [filename]_INS.f records

[design]_INS.v, memory models and MIBST

circuits.

Different from file-list [filename]_INS.f,

[filename]_INS_FAULT.f also includes fault

memory models.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 62

November, 2023

EZ-BIST User Manual v3.4.1

4.3. Generate Folders

The following table shows the generated folders when executing EZ-BIST.

Table 4-3 Generated Folder

 EZ-BIST Output Description

REPORT
This folder is used to save the results of
synthesis.

FAULT_MEMORY
[mem_name]_f.v
fault_memory.f

[mem_name]_f.v is fault memory models.
Some values inside of memory are tied to 0 or
1. This is used to verify functional correctness
of MBIST circuits.

The file-list fault_memory.f records all
generated fault memory models.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 63

November, 2023

EZ-BIST User Manual v3.4.1

4.4. Makefile

EZ-BIST also generates Makefile which includes related commands of simulation and

synthesis for users to verify their designs. Using Makefile, it can easily run various

simulations along with MBIST circuits. Table 4-4 shows the commands of Makefile.

Table 4-4 Commands of Makefile

 Command Description

Self-MBIST

simulation

make

[bistname]

FUNC=tb

It is used to run self MBIST simulation with

[bistname]_tb.v and [bistname].f. The

simulation results will be printed out in the command

line window.

Self-MBIST

simulation with

fault memories

make

[bistname]

FUNC=tb_f

It is used to run self MBIST simulation with

[bistname]_tb.v, [filename].f and fault

memory models. This simulation will show “Failed”

because MBIST has detected faults in the memory

models.

MBIST circuits

synthesis

make

[bistname]

FUNC=dc

It is used to run synthesis with [bistname].tcl

scripts using Design Compiler. The output will be

saved into the REPORT folder.

Check syntax

of self MBIST

circuits with

nLint

make

[bistname]

FUNC=lint

It is used to run syntax check with [bistname].f by

using nLint. The checking result will be saved to file

[bistname]_lint.log.

Remove

generated files
make clean

It is used to remove generated files including *.log,

.fsdb,.db, *.sdf and *.rpt files in the

REPORT folder.

Inserted-

MBIST

simulation

make

[bistname]

FUNC=tb_INS

It is used to run the Inserted MBIST simulation with

[bistname]_tb_INS.v and

[bistname]_INS_FAULT.f, the simulation results

will be printed out in the command line window.

This command is available while the BFL option

insertion is "yes".

Inserted-

MBIST

simulation with

fault memories

make

[bistname]

FUNC=tb_INS_f

It is used to run the Inserted MBIST simulation with

[bistname]_tb_INS.v,

[bistname]_INS_FAULT.f and fault memory

models. The simulation results will show “Failed”

because MBIST has detected faults in the memory

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 64

November, 2023

EZ-BIST User Manual v3.4.1

models.

Check syntax

of inserted-

MBIST circuits

with nLint

make

[bistname]

FUNC=lint_INS

It is used to run syntax check with

[bistname]_INS_FAULT.f by using nLint. This

checking result will be saved to file

[bistname]_lint_INS.log.

Formal

checking

make

[bistname]

FUNC=fm

It is used to run formal checking with

[bistname]_fm.tcl. The output message will be

saved into [bistname]_fm.log.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 65

November, 2023

EZ-BIST User Manual v3.4.1

4.5. Macro File

iSTART’s latch-based clock gating cell model is *_GCK.v (* will be generated

according to the module name in customers’ designs). It can be synthesized in RTL

modeling. However, to control clock skews, it is preferrable to integrate clock cells

from the standard library.

Note: Please change each module in the macro file into the corresponding

standard cell. Figure 4-1 is the example of a clock gating module. Here

“ctr_name” means the prefix name coming from the controller name in

the customer’s design.

module ctr_name_gck (clk_out, clk_en, clk_in, test_en);

input clk_in;

input clk_en;

input test_en;

output clk_out;

`ifdef SYNTHESIS

GCK_VENDOR_CELL gck(

Q(clk_out)

E(clk_en)

TE(test_en)

CK(clk_in)

);

`else

 reg latch_out;

 assign clk_out = clk_in & latch_out;

 always @(clk_in or clk_en or test_en) begin

 if (~clk_in) begin

 latch_out = clk_en | test_en;

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 66

November, 2023

EZ-BIST User Manual v3.4.1

 end

 end

`endif

endmodule

Figure 4-1 Clock Gating Logic for Simulation and Synthesis

Figure 4-2 shows the schematic diagram of a clock gating cell with the waveform.

Figure 4-2 Clock Gating Cell with Waveform

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 67

November, 2023

EZ-BIST User Manual v3.4.1

5. BII File

EZ-BIST provides a BII (Integration Information) File for the integration task, which is

in charge of integrating different MBIST controllers with an integrator module and then

use IEEE1149.1 interface to communicate with ATE. This is used to save the pin count

of the chip level. We will introduce the options of a BII file in this chapter.

5.1. Integrator Function Block

Users can define the hookup pin mapping settings and order of different MBIST

controller in the following function block.

define{Integrator}[Name]

…
end_define{Integrator}

The parameter, [Name] can be modified by users, and this will be the module name

of the generated integrator module. This integrator module will integrate the WSI

signal and WSO signal of each MBIST controller.

Figure 5-1 shows an example to load the existing BII file as the default setting.

Figure 5-1 Load BII

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 68

November, 2023

EZ-BIST User Manual v3.4.1

The options of the integrator function block are shown in Figure 5-2.

Figure 5-2 Options of Integrator Function Block

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 69

November, 2023

EZ-BIST User Manual v3.4.1

The following is the list of BII parameters and their functionalities:

Argument Option

Description

group_order User defined

This option is for users to define the ordering of an MBIST controller by setting the group
sub function block. The testing sequence will follow the setting of group_order.

top_module_name User defined

This option is for users to define the top level module of their design.

TAP_hierarchy User defined

This option is for users to define the hierarchy of integrator module.

verilog_path User defined

Specify the file list which is generated by the BFL flow.
For example,
If the BFL option, fault_free is set to “yes”, the generated filelist file is *_INS.f.

If the BFL option, fault_free is set to “no”, the generated filelist file is *_INS_FAULT.f.

Users can assign “*_INS.f” or “*_INS_FAULT.f” to the verilog_path option.

work_path User defined

Specify the path of the working directory of the BII flow. All generated files in the BII flow
will be saved to work_path.

bist_integ_path User defined

Set the path of the integration specification file *_spec.integ.

Users can assign more than one integration specification files and separate them by the
vertical bar “|”.

For example,

bist_1_spec.integ | bist_2_spec.integ | bist_3_spec.integ.

skip_include_check No, Yes

No: Transform all included paths in the output files into absolute paths
Yes: Only transform the included paths in the modified files (which are named with

keyword “_INS”) into the absolute path

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 70

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

serial _order User defined

The option is used to specify the memory testing order under the individual controller
group. If the option parallel_on in the BFL file is “yes”, the memory will be tested by one
controller sequentially one after another. For some particular cases, users want to test
memories under more than one controller at the same time. By using the serial_order
option, users can assign the controller group priority testing order, and the controller group
contains one or more controllers.

For example, when users assign serial_order to “top_default0, top_default1 |
RP_default0 | RP_default1” and set “parallel_on” to “yes”. In this case:
The priority testing order is [top_default0 & top_default1] => [RP_default0] =>
[RP_default1]

Note: Each memory controller under a group separated by comma “,” is tested at the same
priority order. An individual testing controller group is separated by a vertical bar “|”.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 71

November, 2023

EZ-BIST User Manual v3.4.1

5.1.1. Hookup Sub Function Block

EZ-BIST can support to implement the hookup function automatically. When the

MBIST has been completed, users can get the *.integ file in the MBIST folder. The

*.integ file provides the hookup pins shown in Figure 5-4. Furthermore, users can

define the hookup pin information and pin the remapping information in hookup sub

function block.

The definitions of hookup sub function blocks in the BII file are defined as follows:

define{hookup}[signal]
…

end_define{hookup}

Figure 5-3 Hookup Sub Function Block

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 72

November, 2023

EZ-BIST User Manual v3.4.1

Consequently, the BII hookup information table in *.integ file might differ depending

on the user’s interface.

In Figure 5-4, it shows the IEEE 1149.1 JTAG interface. EZ-BIST supports several

interfaces, such as basic, basicIO, IEEE1149.7, and IEEE1149.1.

 # BII flie hookup information table
 # interface TCK => define{hookup}[TCK]
 # interface TRST => define{hookup}[TRST]
 # interface TMS => define{hookup}[TMS]
 # interface TDI => define{hookup}[TDI]
 # interface TDO => define{hookup}[TDO]
 # controller clock => define{hookup}[top_default_MCK]
 # BIST reset in => define{hookup}[RSTN]
end_define{BIST}

Figure 5-4 BII File Hookup Information Table in *.integ File

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 73

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

hookup User defined

It indicates a hookup sub function block.

signal User defined

It indicates the signals on the integrator module and will be connected with the mapping
port. This signal could be IEEE 1149.1, IEEE 1149.7 signals, IEEE 1687 signals, MCK, or
TCK. For example, the signal name in IEEE 1149.1 could be TCK, TDI, TMS, TRST, and
TDO.

dedicate_port User defined

Set the pin name on the boundary port of a chip. This port could be IEEE 1149.1, IEEE
1149.7 signals, IEEE 1687 signals, MCK, or TCK.

mapping_port User defined

mapping_port is users’ reserved port for MBIST and it can be connected to MBIST by the
mode of replacing the port. The hierarchy must be specified and can be separated by a
space bar. Figure 5-5 is the example of port connection.

The following is the example of command setting:

define{hookup}[TCK]
set dedicate_port = itck
set mapping_port = top u_pm otck

end_define{hookup}

Figure 5-5 The Example of Port Connection

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 74

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

mapping_wire User defined

It connects to MBIST through the wire assignment. The hierarchy must be specified and
can be separated by a space bar. Figure 5-6 is the example of wire connection.

The following is the example of command setting:

define{hookup}[TCK]
set dedicate_port = itck
set mapping_wire = top u_pm otck

end_define{hookup}

Note: Either mapping_port or mapping_wire can be chosen.

Figure 5-6 The Example of Wire Connection

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 75

November, 2023

EZ-BIST User Manual v3.4.1

5.1.2. Group Sub Function Block

The Group sub function block defines the grouping mechanism of all MBIST

controllers.

The following syntax defines the Group sub function block.

define{group}[group_name]

set connection_type = …
set bist_order = …

end_define{group}

Note: [group_name] should be the name which is listed in the column of group_order.

Figure 5-7 Group Sub Function Block

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 76

November, 2023

EZ-BIST User Manual v3.4.1

5.2. Testbench Function Block

The testbench block defines testbench conditions like testbench file format, pll stable

cycles and reset cycles.

The following syntax defines the testbench sub function block:

define{Testbench}[integration_filename]
set pll_wait_cycle = …
set reset_cycle = …
set file_format = …
…sub function block…

end_define{Testbench}

Argument Option

Description

bist_order User defined

This option is for users to establish the connection order of controllers in a chain.

For example, set bist_order to “bist1_controller, bist2_controller, bist3_controller”, and separate
each MBIST controller with a comma “,”. In this case, the integrating order is bist1_controller →
bist2_controller → bist3_controller.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 77

November, 2023

EZ-BIST User Manual v3.4.1

Figure 5-8 Testbench Function Block

Argument Option

Description

bench_name User defined

Set the test bench file name, and the default name is “INTEG_tb”.

pll_wait_cycle User defined

Specify the stable cycle time of PLL. The MBIST circuit will be reset after these stable cycles.
Default Value: 100000

reset_cycle User defined

This option defines the waiting cycles to reset the MBIST circuit. While PLL is stable, the MBIST
circuit will be reset after the period of reset_cycle.

file_format STIL format, WGL format, Verilog

Define the output format of testbench.
The default Setting is “Verilog”.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 78

November, 2023

EZ-BIST User Manual v3.4.1

5.2.1. Initial_sequence Sub Function Block

The Initial_sequence sub function defines the signals on the top level which can force

the system to enter testing mode. In a real chip, users may use some signals to switch

function or testing mode. To run MBIST mode simulation, EZ-BIST will switch these

signals to testing mode. The following syntax defines the testbench sub function block:

define{initial_sequence}[signal]
set width = …
set assert_value = …
set initial_value = …
set enable_cycle = …
set cycle_time = …

end_define{initial_sequence}

Figure 5-9 is the example of Initial sequence from the GUI view.

Figure 5-9 Initial_sequence Sub Function Block

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 79

November, 2023

EZ-BIST User Manual v3.4.1

Argument Option

Description

width User defined

Define the width of a signal. On the top level, users will use pins to switch function mode
and testing mode.

assert_value User defined

Define the assert_value while entering the testing operation.

initial_value User defined

Define the initial value of the switch signal.

enable_cycle User defined

The defined signal will be changed from the initial value to the asserted value after cycle
values are defined with this option.

cycle_time User defined

The defined signal will keep the asserted value with the cycle number which is defined in
this option.

Figure 5-10 is the example of the BII setting content from the GUI view.

Figure 5-10 Example of BII Setting Content

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 80

November, 2023

EZ-BIST User Manual v3.4.1

Select and click “Run” from the “File” drop-down list to execute the BII flow as Figure

5-11 shows.

Figure 5-11 Run BII Setting File

When the BII flow is completed, the status window will pop up to inform you the result

after BFL executed as Figure 5-12 shows.

Figure 5-12 The Status Window When BII Flow is Completed

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 81

November, 2023

EZ-BIST User Manual v3.4.1

6. Appendixes

6.1. “Include” Case

For those designs, which contain a relative path with “include” and will be modified,

EZ-BIST will rewrite the relative path to absolute path. Therefore, if user plan to copy

the design to another path, please manually edit the absolute path based on new path

or re-execute EZ-BIST to generate the correct path.

6.2. Parsing Mode

If the design is RTL, please make sure it could be synthesized. Otherwise, EZ-BIST

cannot parse the design for inserting MBIST circuit to the design.

Due to the diverse syntax of RTL, we suggest users using netlist as an input if RTL

keeps having parsing issue.

6.3. *.rcf File

To avoid simulation failure, please use the absolute path in rom.v if you try to open

a *.rcf file.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 82

November, 2023

EZ-BIST User Manual v3.4.1

6.4. Supported Testing Algorithm

Table 6-1 Testing Algorithms for SRAM in EZ-BIST

Memory

Type

Name Fault Detection Algorithm

SRAM March CW (part 1) SAF, TF, AF, CFin, CFid, CFst,

SOF, RDF

>(wa) >(ra,wb) >(rb,wa,ra)

<(ra,wb,rb) <(rb,wa) <(ra)

March CW (part 2) Word-oriented CF >(wa) >(wb) >(rb,wa,ra)

March Y SAF, TF, CFin, SOF, RDF >(wa) >(ra,wb,rb) <(rb,wa,ra)

<(ra)

March X SAF, TF, AF, CFin >(wa) >(ra,wb) <(rb,wa) <(ra)

MATS++ SAF, TF, AF, SOF >(wa) >(ra,wb) <(rb,wa,ra)

MOVI SAF, TF, AF, CFin, CFst, SOF,

RDF

<(wa) >(ra,wb,rb) >(rb,wa,ra)

<(ra,wb,rb) <(rb,wa,ra)

Ext March C- SAF, TF, AF, CFin, CFid, CFst,

SOF

>(wa) >(ra,wb) >(rb,wa,ra)

<(ra,wb) <(rb,wa) <(ra)

*March C+ SAF, TF, AF, CFin, CFid, CFst,

SOF, RDF

>(wa) >(ra,wb,rb) >(rb,wa,ra)

<(ra,wb,rb) <(rb,wa,ra) <(ra)

March C- SAF, TF, AF, CFin, CFid, CFst >(wa) >(ra,wb) >(rb,wa) <(ra,wb)

<(rb,wa) <(ra)

March C Gray ADOF >(wa) >(ra,wb) >(rb,wa) <(ra,wb)

<(rb,wa) <(ra)

Address only one bit change

March LR SAF, TF, AF, CFin, CFid, CFst,

SOF

>(wa) >(ra,wb) >(rb,wa,ra,wb)

>(rb,wa) >(ra,wb,rb,wa) >(ra)

March C SAF, TF, AF, CFin, CFid, CFst >(wa) >(ra,wb) >(rb,wa) >(ra)

<(ra,wb) <(rb,wa) <(ra)

March B SAF, TF, AF, CFin, CFid, SOF >(wa) >(ra,wb,rb,wa,ra,wb)

>(rb,wa,wb) <(rb,wa,wb,wa)

<(ra,wb,wa)

March A SAF, TF, AF, CFin, CFid >(wa) >(ra,wb,wa,wb)

>(rb,wa,wb) <(rb,wa,wb,wa)

<(ra,wb,wa)

March 17N SAF, TF, AF, CFin, CFid, CFst,

SOF, RDF

>(wb) >(rb,wa,ra) >(ra,wb,rb)

>(rb,wa) <(ra,wb,rb) >(rb)

<(rb,wa,ra) >(ra)

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 83

November, 2023

EZ-BIST User Manual v3.4.1

March 19N 'SAF', 'TF', 'AF', 'CFin', 'CFid',

'CFst', 'SOF', 'RDF'

>(wa,ra) >(wa) >(ra,wb,rb) >(rb)

>(rb,wa,ra) >(ra) <(ra,wb,rb)

>(rb) <(rb,wa,ra) >(ra)

March 33N dRDF, dIRF, dDRDF, dTF,

dWDF

>(wa) >(wa,wb,wa,wb)

>(rb,wa,wa) >(wa,wa)

>(ra,wb,rb,wb,rb,rb) <(rb) <(wb,

wa,wb,wa) <(ra,wb,wb) <(wb,wb)

<(rb,wa,ra,wa,ra,ra) <(ra)

March 33N- 'dRDF', 'dIRF','dDRDF', 'dTF',

'dWDF'

'>(wa) >(wa,wb,wa,wb) >(r-

1b,wa,wa) >(wa,wa) >(r-1a,wb,r-

1b,wb,r-1b,r-1b) <(r-1b)

<(wb,wa,wb,wa) <(r-1a,wb,wb)

<(wb,wb) <(r-1b,wa,r-1a,wa,r-

1a,r-1a) <(r-1a)'

March M SAF, TF, AF, CFin, CFid, CFst,

SOF, RDF

>(wa) >(ra,wb,rb,wa) >(ra)

>(ra,wb) >(rb) >(rb,wa,ra,wb)

>(rb) <(rb,wa)

March Mdsn1 SAF, TF, AF, CFin, CFid, CFst

RET

 Part1~Part4

March Mdsn1 (part1) SAF, TF, AF, CFin, CFid, CFst >(wa) >(wb,wa) (SLP)

>(ra,wb,wb)

March Mdsn1 (part2) SAF, TF, AF, CFin, CFid, CFst >(rb,wa,ra,wa,ra,wb) >(rb,rb)

March Mdsn1 (part3) SAF, TF, AF, CFin, CFid, CFst <(wa,wb) (SLP) <(rb,wa,wa)

March Mdsn1 (part4) SAF, TF, AF, CFin, CFid, CFst <(ra,wb,rb,wb,rb,wa) <(ra,ra)

March SSSc SAF, TF, AF, CFin, CFid, CFst >(wa) >(wb,wb,rb,rb,wa) >(wb)

>(wb,wb,rb,rb,wa)

Non-March BM detect bit/group write enable

faults and datapath shorts.

>(wa) >(wB5b,rB5b)

<(wBAb,rBFb) >(wBAa,rBAa)

<(wB5a,rBFa)

MARCH_RET RET <(wb) (SLP) <(rb) >(wa) (SLP)

>(ra)

CB BF >(wa) >(ra) >(wb) >(rb)

March 8R dRDF >(wa,ra,ra,ra,ra,ra,ra,ra,ra)

>(wb,rb,rb,rb,rb,rb,rb,rb,rb)

March 5W SAF, TF, CFst, dWDF, WDF >(wa)

>(ra,wb,rb,wb,wb,wb,wb,wb)

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 84

November, 2023

EZ-BIST User Manual v3.4.1

>(rb,wa,wa,wa,wa,wa)

<(ra,wb,wb,wb,wb,wb)

<(rb,wa,wa,wa,wa,wa)

March RP WDF >(wa) >(ra,wb) >(rb,wa,r-1a)

<(ra,wb,r-1b) <(rb,wa) >(ra)

**March d2PF 'SAF', 'TF', 'AF', 'CFin', 'CFid',

'CFst', 'SOF', 'RDF', 'Weak WL',

'2PFavS'

'>(n|wa) >(r+1a|n,n|wb)

>(r+1b|n,n|wb) >(r+1b|n,n|wa)

>(r+1a|n,n|wa) >(r+1a|n,n|wb)

>(r+1b|n,n|wb) >(r+1b|n,n|wa)

>(r+1a|n,n|wa)'

**March s2PF 'SAF', 'TF', 'AF', 'CFin', 'CFid',

'CFst', 'SOF', 'RDF', 'Weak WL',

'2PF1s', '2PF1as'

'>(n|wa) >(ra|n,ra|n, n|wb) >(rb|n,

rb|n, n|wa) <(ra|n, ra|n, n|wb)

<(rb|n, rb|n, n|wa) <(ra|n)'

***March A2PF-M SAF, TF, AF, CFin, CFid, CFst,

SOF, RDF, Weak WL, A2PF

>(wa|n) >(ra|ra,wb|r+1a,wb|r-

1b,rb|rb) >(rb|rb,wa|r+1b,wa|r-

1a,ra|ra) <(ra|ra,wb|r-

1a,wb|r+1b,rb|rb) <(rb|rb,wa|r-

1b,wa|r+1a,ra|ra) <(ra|n)

*: Default testing algorithm of EZ-BIST

** : Support two port memory only

*** : Support dual port memory only

±1: used to increase/ decrease memory address

|: used to separate operation of different port

>: indicates address count from o to the highest address in a memory.

<: indicates address count from the highest address to 0 in a memory.

a: indicates test pattern.

b: indicates inverse “a” test pattern.

MISR (Multiple-Input Signature Register)

LFSR (linear feedback shift register)

Table 6-2 Testing Algorithms for ROM in EZ-BIST

Memory Type Name Address sequence Operation Description

ROM *ROM Test
LFSR (rc) Reads and compresses ROM’s content

N/A Compare MISR Compares the final signature

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 85

November, 2023

EZ-BIST User Manual v3.4.1

6.5. Statistics in TSMC SP Memory

Design Architecture:

✓ Memory: Single-port SRAM *20 and ROM *1

✓ Process: TSMC 55nm

✓ Library: sc9_cln55lp_base_rvt_ss_typical_max_1p08v_125c

✓ NAND Gate area: 1.44 um2

I. The default setting of BFL file: default.bfl

Table 6-3 The Default Setting of BFL file

BFL File Column Default Value

clock_trace no

STIL_test_bench no

asynchronous_reset yes

bist_interface basic

address_fast_y no

algorithm_selection no

background_style SOLID

background_bit_inverse no

background_col_inverse no

bypass_support no

bypass_clock no

bypass_reg_sharing 1

clock_function_hookup no

clock_switch_of_memory yes

clock_source_switch no

clock_within_pll no

diagnosis_support no

diagnosis_data_sharing no

diagnosis_memory_info no

diagnosis_time_info no

diagnosis_faulty_items all

parallel_on no

reduce_address_simulation no

rom_result_shiftout no

Q_pipeline no

algorithm March C+

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 86

November, 2023

EZ-BIST User Manual v3.4.1

BFL File Column Default Value

meminfo 1 Ctr 2 Seq 2 Group

Table 6-4 Synthetic Area of default.bfl

Referenced Library Total Area

top_default_controller 798.120025

top_default_sequencer1 528.84001

top_default_sequencer2 258.480007

top_default_ter_1_1_1 402.840007

top_default_ter_1_1_2 402.840007

top_default_ter_1_1_3 402.840007

top_default_ter_1_1_4 402.840007

top_default_ter_1_1_5 402.840007

top_default_ter_1_1_6 402.840007

top_default_ter_1_1_7 402.840007

top_default_ter_1_1_8 402.840007

top_default_ter_1_1_9 402.840007

top_default_ter_1_1_10 402.840007

top_default_ter_1_1_11 402.840007

top_default_ter_1_1_12 402.840007

top_default_ter_1_1_13 402.840007

top_default_ter_1_1_14 402.840007

top_default_ter_1_1_15 402.840007

top_default_ter_1_1_16 402.840007

top_default_ter_1_1_17 402.840007

top_default_ter_1_1_18 402.840007

top_default_ter_1_1_19 402.840007

top_default_ter_1_1_20 402.840007

top_default_ter_2_1_1 164.160006

top_default_tpg_1_1_1 334.8

top_default_tpg_1_1_2 336.24

top_default_tpg_1_1_3 336.24

top_default_tpg_1_1_4 334.8

top_default_tpg_1_1_5 333.36

top_default_tpg_1_1_6 334.8

top_default_tpg_1_1_7 333.36

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 87

November, 2023

EZ-BIST User Manual v3.4.1

Referenced Library Total Area

top_default_tpg_1_1_8 334.8

top_default_tpg_1_1_9 331.92

top_default_tpg_1_1_10 333.36

top_default_tpg_1_1_11 334.8

top_default_tpg_1_1_12 334.8

top_default_tpg_1_1_13 334.8

top_default_tpg_1_1_14 334.8

top_default_tpg_1_1_15 333.36

top_default_tpg_1_1_16 333.36

top_default_tpg_1_1_17 333.36

top_default_tpg_1_1_18 331.92

top_default_tpg_1_1_19 331.92

top_default_tpg_1_1_20 331.92

top_default_tpg_2_1_1 606.960003

Total 145 references 17092.08019

(Unit:um2)

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 88

November, 2023

EZ-BIST User Manual v3.4.1

II. Refer to Circuit Area Comparison table to change each option in

default.bfl file.

For example, set the option asynchronous_reset to “no”, the circuit area will become

99.085% of the original circuit area, which means the circuit area will decrease by

about 0.91%.

Table 6-5 Area Comparison Table

Process/Lib.: TSMC 55nm/

sc9_cln55lp_base_rvt_ss_typical_max_1p08v_125c

+: Increase, -: Decrease

Default .bfl

asynchronous_reset = no -0.91%

address_fast_y = yes 3.08%

clock_within_pll = yes 0.11%

parallel_on =yes 0.96%

reduce_address_simulation = yes 3.10%

rom_result_shiftout = yes 7.05%

Q_pipeline = yes 67.60%

bist_interface = ieee1500 1.03%

bist_interface = ieee1149.1 2.25%

algorithm add March C- 0.44%

algorithm add March C-

algorithm_selection = outside
0.61%

algorithm add March C-

algorithm_selection = scan
0.61%

Note: If the option algorithm_selection set to “outside” or “scan”, the circuit area will increase by

0.17%.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 89

November, 2023

EZ-BIST User Manual v3.4.1

Process/Lib.: TSMC 55nm/

sc9_cln55lp_base_rvt_ss_typical_max_1p08v_125c

+: Increase, -: Decrease

Default .bfl

background_style = 5A 0.93%

background_bit_inverse = yes 2.07%

background_col_inverse = yes 0.67%

bypass_support = wire 14.42%

bypass_support = reg 82.81%

bypass_support = reg

bypass_clock = yes
82.81%

bypass_support = reg

bypass_clock = yes

bypass_reg_sharing = 2

60.38%

bypass_support = reg

bypass_clock = yes

bypass_reg_sharing = 4

45.74%

Note: If the option bypass_support is set to “reg”, the circuit area will increase by 82.81%. If the option

bypass_clock is set to “yes”, the circuit area will increase by 82.81%. However, if

bypass_reg_sharing is set to “2”, the circuit area will only increase by 60.38%. The option

bypass_reg_sharing can effectively reduce the circuit area.

Copyright© iSTART-TEK INC Limited 2023-2024, All Rights Reserved. 90

November, 2023

EZ-BIST User Manual v3.4.1

6.6. RTL Syntax Restrictions

I. For a module instance, empty port information is not allowed.

Example:

module UART (D, Q, CK);

 input D, CK;

 ...

endmodule

The following syntax is not supported:

UART u_uart();

Instead, the following syntax is supported:

UART u_uart(.CK());

II. A module with no content inside is not supported. A module must have at least

one line of RTL code inside.

Example:

module wrapper (input ck);

endmodule

